题目给了一堆[起始位置,结束位置]的数组,定义了一个个区间
任务则是要求对于给定的第I个区间,找到一个最小的j,这里的j的起始位置大于等于I的结束为止
其实暴力一点可以直接搜索,但是这里还不需要
这里使用了Java中的TreeMap
首先将所有起始位置和他的序号放入TreeMap(key是位置I的起始位置,value是I)当中
随后遍历每个位置的结束为止,使用TreeMap的方法,使用当前序号结束位置的大小找到TreeMap中第一个大于等于其结束位置的Entry,如果存在则取出value,不然就返回-1
Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.
For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.
Note:
You may assume the interval's end point is always bigger than its start point.
You may assume none of these intervals have the same start point.
Example 1:
Input: [ [1,2] ]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: [ [3,4], [2,3], [1,2] ]
Output: [-1, 0, 1]
Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.
Example 3:
Input: [ [1,4], [2,3], [3,4] ]
Output: [-1, 2, -1]
Explanation: There is no satisfied "right" interval for [1,4] and [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point.
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int[] findRightInterval(Interval[] intervals) {
int[] result = new int[intervals.length];
java.util.NavigableMap map = new TreeMap<>();
for (int i = 0; i < intervals.length; ++i) {
map.put(intervals[i].start, i);
}
for (int i = 0; i < intervals.length; ++i) {
//使用treemap返回至少大于等于的给定值,也就是至少大于等于等于intervals[i].end的值
Map.Entry entry = map.ceilingEntry(intervals[i].end);
result[i] = (entry != null) ? entry.getValue() : -1;
}
return result;
}
}