现在有一个二叉搜索树,现在要让你删除一个节点,并且保证整个BST的性质不变。
要保证整个性质,我们必须在删除的位置上,找一个合适的值来进行替换,使得BST上的每个节点都满足 当前节点的值大于左节点但是小于右节点
而替换策略就是:
1、当前删除位置,用左边子树的最大值的节点替换
2、或者是,用右边子树的最小值的节点替换
用上面的策略就可以保证删除后性质不变,并且调整开销也很少
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
Search for a node to remove.
If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7]
key = 3
5
/ \
3 6
/ \ \
2 4 7
Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the following BST.
5
/ \
4 6
/ \
2 7
Another valid answer is [5,2,6,null,4,null,7].
5
/ \
2 6
\ \
4 7
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int findReplacement(TreeNode parent,TreeNode node,boolean isLeft){
if(node.right == null){
if (isLeft)
parent.left = node.left;
else parent.right = node.left;
return node.val;
}
return findReplacement(node,node.right,false);
}
public TreeNode deleteNode(TreeNode root, int key) {
if(root==null)
return null;
if(root.val == key){
if(root.left == null)
return root.right;
if(root.right == null)
return root.left;
root.val = findReplacement(root,root.left,true); // 选择左边最大的,或者右边最小的
} else{
if(root.val > key)
root.left = deleteNode(root.left,key);
else
root.right = deleteNode(root.right,key);
}
return root;
}
}