Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 50000
Output
For each test case output one number saying the number of distinct substrings.
Example
Input:
2
CCCCC
ABABA
Output:
5
9
【分析】
嗯…参考 论文
…nei个神奇的spoj交不了题…所以现在暂时未通过…我把样例过了假装自己A了吧
【代码】
#include
#include
#include
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100005;
int a[mxn],b[mxn],x[mxn],y[mxn],sa[mxn],rank[mxn],height[mxn];
char s[mxn];
int n,m,len,T;
inline bool comp(int i,int j,int l)
{
return y[i]==y[j]&&(i+l>len?-1:y[i+l])==(j+l>len?-1:y[j+l]);
}
inline void work()
{
int i,j,k,p;
fo(i,0,m) b[i]=0;
fo(i,1,len) b[x[i]=a[i]]++;
fo(i,1,m) b[i]+=b[i-1];
for(i=len;i>=1;i--) sa[b[x[i]]--]=i;
for(k=1;k<=len;k<<=1)
{
p=0; //处理第二关键字
fo(i,len-k+1,len) y[++p]=i;
fo(i,1,len) if(sa[i]>k) y[++p]=sa[i]-k;
//处理第一关键字
fo(i,0,m) b[i]=0;
fo(i,1,len) b[x[y[i]]]++;
fo(i,1,m) b[i]+=b[i-1];
for(i=len;i>=1;i--) sa[b[x[y[i]]]--]=y[i];
swap(x,y),p=2,x[sa[1]]=1;
fo(i,2,len)
x[sa[i]]=comp(sa[i-1],sa[i],k)?p-1:p++;
if(p>len) break;
m=p;
}
p=k=0;
fo(i,1,len) rank[sa[i]]=i;
for(i=1;i<=len;height[rank[i++]]=k)
for(k?k--:0,j=sa[rank[i]-1];a[i+k]==a[j+k];k++);
}
int main()
{
int i,j,ans;
scanf("%d",&T);
while(T--)
{
M(a);M(sa);
ans=0;
m=129;
scanf("%s",s+1);
len=strlen(s+1);
fo(i,1,len) a[i]=s[i];
work();
fo(i,1,len) ans+=len-sa[i]+1-height[i];
printf("%d\n",ans);
}
return 0;
}
/*
2
CCCCC
*/