求 解 ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] 求解\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k] 求解i=1∑nj=1∑m[gcd(i,j)=k]
反 演 过 程 : 反演过程: 反演过程:
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] \sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k] i=1∑nj=1∑m[gcd(i,j)=k]
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ε [ g c d ( i , j ) = 1 ] \sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor}\varepsilon[gcd(i,j)=1] i=1∑⌊kn⌋j=1∑⌊km⌋ε[gcd(i,j)=1]
枚 举 d : 枚举d: 枚举d:
∑ d = 1 ⌊ m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) ⌋ ∑ d ∣ T μ ( d ) ⌊ n T ⌋ ⌊ m T ⌋ \sum_{d=1}^{\left \lfloor min(\left \lfloor \frac{n}{k} \right \rfloor,\left \lfloor \frac{m}{k} \right \rfloor)\right \rfloor}\sum_{d|T}\mu(d)\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor d=1∑⌊min(⌊kn⌋,⌊km⌋)⌋d∣T∑μ(d)⌊Tn⌋⌊Tm⌋
T 换 k d 得 : T换kd得: T换kd得:
∑ d = 1 ⌊ m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) ⌋ μ ( d ) ⌊ n k d ⌋ ⌊ m k d ⌋ \sum_{d=1}^{\left \lfloor min(\left \lfloor \frac{n}{k} \right \rfloor,\left \lfloor \frac{m}{k} \right \rfloor)\right \rfloor}\mu(d)\left \lfloor \frac{n}{kd} \right \rfloor \left \lfloor \frac{m}{kd} \right \rfloor d=1∑⌊min(⌊kn⌋,⌊km⌋)⌋μ(d)⌊kdn⌋⌊kdm⌋
先 预 处 理 莫 比 乌 斯 函 数 , 然 后 整 数 分 块 做 , 复 杂 度 为 O ( n + T n ) 先预处理莫比乌斯函数,然后整数分块做,复杂度为O(n + T\sqrt n) 先预处理莫比乌斯函数,然后整数分块做,复杂度为O(n+Tn)
#include
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pdd;
#define INF 0x7f7f7f
#define mem(a, b) memset(a , b , sizeof(a))
#define FOR(i, x, n) for(int i = x;i <= n; i++)
// const ll mod = 998244353;
// const int maxn = 1e5 + 10;
// const double eps = 1e-6;
const int N = 5e5 + 10;
int mu[N]; // 莫比乌斯函数
bool is_prime[N];
int prime[N];
int cnt;
ll sum[N]; // 记录莫比乌斯函数前缀和
void Mobi() // 莫比乌斯函数初始化
{
mu[1] = 1;
is_prime[0] = is_prime[1] = true;
for(int i = 2;i < N; i++) {
if (!is_prime[i]) {
mu[i] = -1;
prime[++cnt] = i;
}
for (int j = 1; j <= cnt && i * prime[j] < N; j++) {
is_prime[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1;i < N; i++) {
sum[i] = sum[i - 1] + mu[i];
}
}
ll k;
ll Ans(ll n, ll m) {
ll ans = 0;
n /= k, m /= k;
int mx = min(n, m);
for(int l = 1, r;l <= mx; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans += (n / l) * (m / l) * (sum[r] - sum[l - 1]);
}
return ans;
}
void solve() {
Mobi();
int T;
cin >> T;
while(T--) {
ll n, m;
cin >> n >> m >> k;
cout << Ans(n, m) << endl;
}
}
signed main() {
ios_base::sync_with_stdio(false);
//cin.tie(nullptr);
//cout.tie(nullptr);
#ifdef FZT_ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
signed test_index_for_debug = 1;
char acm_local_for_debug = 0;
do {
if (acm_local_for_debug == '$') exit(0);
if (test_index_for_debug > 20)
throw runtime_error("Check the stdin!!!");
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
} while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
solve();
#endif
return 0;
}