KMP算法的next[]数组的求法和理解

KMP算法的关键是next数组的求法

在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

 

用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

位置i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

前缀next[i]

0

0

0

0

1

2

3

1

2

3

4

5

6

7

4

0

子串

a

g

c

t

a

g

c

a

g

c

t

a

g

c

t

g

 

 

(1)逐个查找对称串。

 

这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

第1个a无对称,所以对称程度0

前两个ag无对称,所以也是0

依次类推前面0-4都一样是0

前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

(2)回头来找对称性

这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

在这里依然用上面表中一段来举个例子:   

位置i=0到14如下,我加的括号只是用来说明问题:

(a g c t a g c )( a g c t a g c) t

我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

 

从上面的理论我们就能得到下面的前缀next数组的求解算法。

 

 

void SetPrefix(const char *Pattern, int prefix[])
{
     int len=CharLen(Pattern);//模式字符串长度。
     prefix[0]=0;
     for(int i=1; i


KMP还有一种写法:这个写法是经过优化的:

 

 

 

 

 int  j = -1,  i = 0;
  next[0] = -1;
  while(i < len)
  {
            if(j == -1 || ss[i] == ss[j])
           {
                     i++;
                     j++;
                     next[i] = j;
          }
          else
         {
                    j = next[j];
         }
 }

 

 

 

 

 

你可能感兴趣的:(数据结构)