- Python的那些事第二十三篇:Express(Node.js)与 Python:一场跨语言的浪漫邂逅
暮雨哀尘
Python的那些事linuxpythonnode.jsexpress服务器开发语言web开发
摘要在当今的编程世界里,Node.js和Python像是两个性格迥异的超级英雄,一个以速度和灵活性著称,另一个则以强大和优雅闻名。本文将探讨如何通过Express框架将Node.js和Python结合起来,打造出一个高效、有趣的Web应用。我们将通过一系列幽默风趣的实例和表格,展示这种跨语言合作的无限可能。如果你厌倦了单调的技术论文,那么这篇论文绝对能让你眼前一亮!1.引言:当Node.js遇上P
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- <Attention Is All You Need>:全网首次提出Transformer模型论文中英文对照学习
kingking44
transformer学习人工智能
论文摘要英文Thedominantsequencetransductionmodelsarebasedoncomplexrecurrentorconvolutionalneuralnetworksthatincludeanencoderandadecoder.Thebestperformingmodelsalsoconnecttheencoderanddecoderthroughanattenti
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 【论文精读】Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
EEPI
自动驾驶人工智能论文阅读深度学习目标检测
1背景团队:地平线时间:代码:简介:这篇论文是Sparse4D的续作,区别主要在于特征时序融合上,新版提高了运算效率。后续端到端SparseDrive的基本框架与这篇基本类似。2存在的问题2.1其他稀疏3D检测的问题PETR是query-based方法,但是为了实现特征融合,进行了全局注意力机制,导致高计算量。2.2Sparse4Dv1的问题Sparse4Dv1的时序特征融合hierarchyfu
- 每周论文精读05-A2J:AnchortoJointRegressionNetwork for 3D ArticulatedPoseEstimation from a SingleDepthImage
Jason_____Wang
精读笔记python计算机视觉卷积手势识别深度学习
https://download.csdn.net/download/Jason_____Wang/16502249论文精读——A2J:Anchor-to-JointRegressionNetworkfor3DArticulatedPoseEstimationfromaSingleDepthImage标题比较长,已经打不完了。。所以题目格式有些变形,望谅解。上周尝试做了一下代码复现的方向,因为生活
- 基于ESP-NOW协议的温室通风监控系统
神一样的老师
物联网论文阅读分享物联网
论文标题中文标题:基于ESP-NOW协议的温室通风监控系统英文标题:SistemademonitoreodeventilacióneninvernaderoconprotocoloESP-NOW作者信息HéctorDeSosaa,*,GermánA.Xandera,LuisA.Urbania,AlejandroG.MaxitaaUniversidadNacionaldeMisiones,Facul
- MobileNetV4(2024 ECCV)
刘若里
论文阅读学习网络计算机视觉笔记
论文标题MobileNetV4:UniversalModelsfortheMobileEcosystem论文作者DanfengQin,ChasLeichner,ManolisDelakis,MarcoFornoni,ShixinLuo,FanYang,WeijunWang,ColbyBanbury,ChengxiYe,BerkinAkin,VaibhavAggarwal,TenghuiZhu,Da
- 【300套】基于Springboot+Vue的Java毕业设计项目(附源码+演示视频+LW)
程序猿老A(专注毕业设计)
基于Java的毕业设计javaspringboot课程设计
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。今天给大家分享300+的Java毕业设计,基于Springboot+vue框架,这些项目都经过精心挑选,涵盖了不同的实战主题和用例,可做毕业设计和课程设计参考。✍️除了源码,对于大部分项目实现的功能都有相应的介绍,并且配有演示视频,方便大家根据自己的需要择优下载学习。另外如有定制需求或者想要相对应的论文参考,文末可以十我VX联系。后续还会持续
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- Mooncake:kimi后端推理服务的架构设计
风生水气
大模型应用技术栈大模型人工智能ai语言模型后端
前言本文依托论文《Mooncake:AKVCache-centricDisaggregatedArchitectureforLLMServing》来讲解kimi的后端服务架构Mooncake,并按照自己的思路来梳理论文中的一些关键信息。背景服务端面临的问题随着大模型技术越来越强,很多应用都是以Maas(ModelasaService)的方式对外提供服务,服务端的能力受模型的能力约束。对于C端应用来
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- 【AI论文】随机鹦鹉在大型语言模型(LLM)之肩:物理概念理解的总结性评估
东临碣石82
人工智能语言模型自然语言处理
摘要:我们以系统的方式探讨了一个被广泛提及的问题:大型语言模型(LLM)真的理解它们所说的话吗?这与人们更为熟悉的术语“随机鹦鹉”息息相关。为此,我们提出了一项总结性评估,针对一项精心设计的物理概念理解任务——PhysiCo。我们的任务通过使用网格格式的输入来抽象描述物理现象,从而缓解了记忆问题。这些网格代表了不同层次的理解,从核心现象、应用实例到网格世界中其他抽象模式的类比。对我们任务的全面研究
- 「重磅」Sci.Robot最新封面:由多种人体肌肉组织驱动的生物混合手,人机融合取得新突破
天机️灵韵
具身智能人工智能硬件设备机器人生物信息学具身智能人工智能
ScienceRobotics查看原文:https://www.science.org/doi/10.1126/scirobotics.adr5512论文解析:《Biohybridhandactuatedbymultiplehumanmuscletissues》研究背景与目标本研究提出了一种基于生物混合技术的机械手,通过集成多个人体骨骼肌组织(MuMuTA,Multi-MaterialMulti-
- 2025年美赛数学建模 ICM 问题 F: 网络安全强大吗?
深度学习&目标检测实战项目
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025美赛F题网络安全强大吗思路代码F题
全部都是公开资料,不代写论文,请勿盲目订阅)2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpto1pro分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgptpro会员,会充分利用chatgpto1
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- python flask django在线投票系统 md14i
专注分享bishe530
pythonflaskdjango
文章目录具体实现截图项目技术介绍论文写作思路核心代码部分展示可定制开发功能创新亮点django项目示例源码/演示视频获取方式具体实现截图项目技术介绍Python版本:python3.7以上框架支持:flask/django开发软件:PyCharm数据库:mysql数据库工具:Navicat浏览器:谷歌浏览器(PycharmFlaskDjangoVuemysql)论文写作思路第一部分绪论,主要介绍所
- 人工智能推理模型(S1-32B)超越DeepSeek?
deepdata_cn
垂域模型人工智能人工智能大语言模型
S1模型是由斯坦福大学和华盛顿大学的研究团队在李飞飞教授的领衔下开发的人工智能推理模型。从2000年李飞飞进入加州理工学院攻读研究生起,就一直从事人工智能研究,在计算机视觉领域创立了拥有1500万张图片的ImageNet数据库,为人工智能计算机视觉研究奠定了基础,也积累了深厚的人工智能技术理论和实践经验。论文地址:https://arxiv.org/pdf/2501.19393一、发展过程模型采用
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 构建知识图谱之二(知识图谱构建技术)
tomlone
知识谱图知识图谱人工智能
ArchitectureofKnowledgeGraphConstructionTechniques知识图谱构建技术论文链接:https://acadpubl.eu/jsi/2018-118-19/articles/19b/24.pdf1.为什么我们需要构建知识图谱?构建知识图谱对于保险行业的意义在于它能够将分散的、复杂的行业数据连接起来,促进智能化决策、增强风险控制能力、提高效率并优化客户体验。
- 文献管理详解-ChatGPT4o作答
部分分式
笔记
文献管理详解文献管理是学术研究中的重要环节,尤其是在撰写论文、报告或项目时,研究者往往需要处理大量的参考文献。一个科学高效的文献管理流程,能够显著提升研究工作的效率和质量。以下从文献管理的意义、基本流程、常用工具、技巧与策略以及常见问题等方面详细讲解文献管理。1.文献管理的意义1.1提高效率避免重复查找文献,节约时间。快速检索需要的文献和数据,尤其是在文献量较大的情况下。1.2提升写作质量在论文写
- C++循环结构:原理剖析与工程实践优化策略
溟海.
c++开发语言
以下是一篇关于C++循环结构的原创技术论文框架及内容示例,包含理论解析与工程实践结合的分析C++循环结构:原理剖析与工程实践优化策略**摘要**本文系统探讨C++语言中循环结构的实现机制、应用场景及优化方法。通过分析for、while、do-while三种基本循环结构在编译器层面的实现差异,结合现代C++11/17标准新增特性,提出面向性能优化和代码可维护性的工程实践方案。实验表明,合理选择循环结
- SoftEther 内网穿透配置及使用*
十八点四零
运维阿里云网络
一、程序简介SoftEtherV*N是个由筑波大学DaiyuuNobori研究生因硕士论文开发的开源、跨平台、多重协议的虚拟专用网方案。他让一些虚拟专用网协议像是SSLV*N、L2TP、IPsec、OpenV*N以及微软SSTP都由同一个单一V*N服务器提供。在2014年一月四日以GNU通用公共授权条款方式发布。SothEtherV*N是专门被设计为穿过防火墙的。它支持NAT穿透,使他能越过政府或
- C++栈内存管理:从原理到高性能编程实践
溟海.
c++c++开发语言
以下是一篇关于C++栈机制的原创技术论文框架及内容,结合语言规范、编译器实现与工程实践,包含创新性分析和实验验证:---**C++栈内存管理:从原理到高性能编程实践****摘要**本文深入剖析C++栈内存的分配机制、生命周期管理及优化策略。通过反汇编分析GCC/Clang编译器实现,验证栈帧结构与函数调用约定,提出基于现代C++特性的栈使用优化方案。实验证明,合理控制栈空间可降低30%内存访问延迟
- 计算机毕业设计——Springboot点餐平台网站
程序媛9688
课程设计springboot后端
作者:程序媛9688开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等。文末获取源码+数据库感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人计算机毕业设计——jspssm523Springboot点餐平台网站SpringBoot点餐平台网站功能说明在当今数字化时
- 基于JavaSpringmvc+myabtis+html的鲜花商城系统设计和实现
网顺技术团队
成品程序项目html前端课程设计java开发语言mybatis
基于JavaSpringmvc+myabtis+html的鲜花商城系统设计和实现作者主页网顺技术团队欢迎点赞收藏⭐留言文末获取源码联系方式查看下方微信号获取联系方式承接各种定制系统精彩系列推荐精彩专栏推荐订阅不然下次找不到哟Java毕设项目精品实战案例《1000套》感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人文章目录基于JavaSpri
- 紫光展锐面试——软件岗
fpga和matlab
★求职2:大厂笔试面试总结面试java职场和发展紫光展锐面试紫光展锐笔试
目录面试案例1面试案例2笔试一面二面三面四面面试案例3三面面试案例11、自我介绍2、问项目、方向3、static关键字4、volatile关键字5、final关键字6、synchronized关键字7、进程和线程的区别8、进程通信方式的区别(共享内存、消息队列优缺点)9、线程通信方式10、接口和抽象类的区别11、设计模式熟悉吗?说完之后讲下单例模式?12、拿过什么奖吗13、发过论文和专利吗14、能
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s