- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- JuPyter(IPython) Notebooks中使用pip安装Python的模块
weixin_34218890
开发工具python人工智能
问题描述:没有带GPU的电脑,搞深度学习不是耍流氓嘛,我网上看到有个云平台,免费使用了一下,小姐姐很热情。使用过程如下:他们给的接口是Jupyter编辑平台,我就在上面跑了一个小例子。tensorflow和python环境是他们配置好的,不过我的例子中需要导入matplotlib.pylot模块。可是他们没有提供,怎么办呢?网上查了一下啊解决方法:采用如下方法:importpipdefMyPipi
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- happy-llm 第一章 NLP 基础概念
weixin_38374194
自然语言处理人工智能学习
文章目录一、什么是NLP?二、NLP发展三大阶段三、NLP核心任务精要四、文本表示演进史1.传统方法:统计表征2.神经网络:语义向量化课程地址:happy-llmNLP基础概念一、什么是NLP?核心目标:让计算机理解、生成、处理人类语言,实现人机自然交互。现状与挑战:成就:深度学习推动文本分类、翻译等任务达到近人类水平。瓶颈:歧义性、隐喻理解、跨文化差异等。二、NLP发展三大阶段时期代表技术核心思
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- 创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】
程序员Gloria
YOLOv8YOLO目标跟踪人工智能目标检测
文章目录创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】引言1.YOLOv8模型概述1.1YOLOv8架构1.2YOLOv8小目标检测的挑战2.HAttention模块:原理与设计2.1HAttention模块的动机2.2HAttention模块的结构3.HAttention模块在YOLOv8中的应用3.1引入HAttention模块3.2YOLOv8架构修改3.3
- PHP接单涨薪系列(九)之计算机视觉实战:PHP+Stable Diffusion接单指南(2025高溢价秘籍)
攻城狮凌霄
PHPPHP接单涨薪AIphp计算机视觉stablediffusion
案例场景某电商公司使用本方案后,产品图制作成本降低90%,广告转化率提升35%,单月节省设计费用超¥80,000。本文将彻底解密如何用PHP+AI视觉技术接取高单价设计外包,让你在竞争激烈的市场中脱颖而出!一、视觉设计市场的AI革命1.1传统设计vsAI设计设计任务传统流程AI流程需求沟通初稿设计反复修改最终交付AI生成微调即时交付2025年设计市场数据对比:指标传统设计AI设计提升幅度单图制作时
- YOLOv11深度解析:Ultralytics新一代目标检测架构创新与实战指南
芯作者
D2:YOLOYOLO神经网络计算机视觉
2024年Ultralytics重磅推出YOLOv11**:在精度与速度的平衡木上再进一步,参数减少22%,推理速度提升2%,多任务支持全面升级!一、YOLOv11核心创新:轻量化与注意力机制的完美融合YOLOv11并非颠覆性重构,而是通过模块级优化实现“少参数、高精度、快推理”的目标。其三大创新点如下:1.1C3k2模块:动态卷积核的灵活设计取代YOLOv8的C2f模块,C3k2通过参数c3k动
- 供应链风险管理:AI预测潜在风险
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,风险评估,供应链可视化1.背景介绍在当今全球化经济体系中,供应链的复杂性和脆弱性日益凸显。供应链风险是指任何可能对供应链正常运行造成负面影响的事件或因素。这些风险可能来自自然灾害、政治动荡、经济波动、技术故障、供应商违约等方面。一旦供应链风险爆发,可能会导致生产中断、产品短缺、成本飙升、品牌形象受损等严重后果。传统供应链风险管理方法主要依
- 供应链风险管理:AI如何预测供应链风险
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,时间序列分析,风险评估1.背景介绍在当今全球化经济体系中,供应链风险已成为企业面临的重大挑战。供应链的复杂性和不可预测性使得企业更容易受到各种风险的影响,例如自然灾害、政治动荡、经济波动、疫情爆发等。这些风险可能导致供应中断、成本增加、交付延迟,甚至损害企业声誉。传统供应链风险管理方法主要依赖于经验和专家判断,缺乏数据驱动和预测能力。随着
- 【极光优化算法+分解对比】VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测Matlab代码
matlab科研助手
算法transformerlstm
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍光伏发电作为一种清洁能源,其功率预测对于电网稳定运行和电力系统调度至关重要。然而,光伏功率具有高度的非线性和波动性,传统的预测方法难以准确捕捉其动态特性。近年来,深度学习技术在时间序列预测领域取得了显著进展,为提高光伏功率预测精度提供了新的途径
- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- 深度学习数据集加载
Ethan@LM
深度学习人工智能
数据集结构E:\Mytest\test20250622\pythonProject\dataset├──rose│├──rose1.jpg│├──rose2.jpg│└──...└──sunflower├──sunflower1.jpg├──sunflower2.jpg└──...主要只有的两个类fromtorch.utils.dataimportDatasetfromtorchvisionimp
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习架构
【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构结果与讨论3.1消融区制图欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要
- 目标检测新纪元:DETR到Mamba实战解析
加油吧zkf
图像处理python分类人工智能目标检测
【实战分享】目标检测的“后DEⱯ”时代:DETR/DINO/RT-DETR及新型骨干网络探索(含示例代码)目标检测从YOLO、FasterR-CNN到Transformer结构的DETR,再到DINO、RT-DETR,近两年出现了许多新趋势:更高效的端到端结构、更少的手工设计(比如不再需要NMS)、以及新型轻量化骨干网络(比如Mamba、ConvNeXt、ViT等)被引入检测任务中。作为从事目标检
- OpenCV中DPM(Deformable Part Model)目标检测类cv::dpm::DPMDetector
村北头的码农
OpenCVopencv目标检测人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中用于基于可变形部件模型(DPM)的目标检测器,主要用于行人、人脸等目标的检测。它是一种传统的基于特征的目标检测方法,不依赖深度学习,而是使用HOG特征+部件模型来进行检测。示例代码#include#include#includeusingnamesp
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- 《ONNX推理部署全解析:从基础到进阶的实用指南》
空云风语
人工智能深度学习神经网络人工智能深度学习神经网络YOLOONNX
ONNX基础入门ONNX是什么ONNX,即OpenNeuralNetworkExchange(开放神经网络交换),是一种用于表示深度学习模型的开放标准文件格式。它由Facebook和Microsoft在2017年联合开发,后来得到了NVIDIA、Intel、AWS、Google、OpenAI等众多公司的支持,旨在解决不同深度学习框架之间模型格式不兼容的问题,为模型的存储、交换和部署提供统一标准,使
- 《YOLO11的ONNX推理部署:多语言多架构实践指南》
空云风语
YOLO人工智能深度学习目标跟踪人工智能计算机视觉YOLO
引言:YOLO11与ONNX的相遇在计算机视觉的广袤星空中,目标检测始终是一颗耀眼的明星,其在自动驾驶、智能安防、工业检测、医疗影像分析等诸多领域都有着举足轻重的应用。想象一下,自动驾驶汽车需要实时准确地检测出道路上的车辆、行人、交通标志;智能安防系统要快速识别出监控画面中的异常行为和可疑人员;工业生产线上,需要精准检测产品的缺陷;医疗影像分析中,辅助医生检测病变区域。这些场景都对目标检测技术的准
- 【CVPR2024】计算机视觉|即插即用|DFAM:marine!不懂DFAM,别说你会做水下动物分割!
论文地址:http://arxiv.org/pdf/2404.04996v1代码地址:https://github.com/Drchip61/Dual_SAM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要本研究提出了一种新颖的特征学习框架,名为**Dual-SAM,用于高性能的海洋动物分割
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo