- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 基础算法(一)#蓝桥杯
席万里
C/C++算法蓝桥杯c++
文章目录1、模拟1.1、DNA序列修正1.2、无尽的石头2、递归2.1、带备忘录的斐波那契数列2.2、数的计算3、进制转换3.1、进制转换模板3.2、Alice和Bob的爱恨情仇4、前缀和4.1、前缀和模板4.2、区间次方和4.3、小郑的蓝桥平衡串4.4、大石头的搬运工4.5、最大数组和4.6、四元组问题**5、差分5.1、区间更新(一维差分)5.2、肖恩的投球游戏加强版5.4、泡澡6、离散化6.
- 主席树求区间第K小模板
Stephen_Curry___
算法c++数据结构主席树
主席树(PresidentTree)是一种用于解决区间查询和修改问题的数据结构,通常用于静态区间问题(即查询和修改操作在构建结构之后不再发生变化)。主席树可以高效地处理诸如区间和、区间最值等问题。主席树的实现原理:基本思想:主席树是一种基于分治思想的数据结构,它将原始序列按照每个位置的取值范围进行离散化,然后构建出一棵持久化线段树(PersistentSegmentTree)。持久化线段树:持久化
- 【算法随笔:HDU 3333 Turing tree】(线段树 | 离线 | 离散化 | 贪心)
XNB's Not a Beginner
算法算法哈希算法leetcodec++排序算法
https://acm.hdu.edu.cn/showproblem.php?pid=3333https://acm.hdu.edu.cn/showproblem.php?pid=3333https://vjudge.net.cn/problem/HDU-3333https://vjudge.net.cn/problem/HDU-3333题目很简单,给出长度为N的数组,Q次询问,每次给出区间[x,
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 离散化【学习笔记】
Simple World.
c++算法
引入小丁:小智,你不觉得我们小区旁边的树木太多太挤了吗?小智:确实。要不我们把一些树移走?小区对面的学校旁可正缺树呢!小丁:不过我们又不能自己把树移走,得找人帮忙。小智:嗯。要不我们就在树旁边标记一下,让园林工人移植一下吧。小丁和小智开始了自己的活儿……小丁从左往右,每数120棵便标记一棵树。小智从左往右,每数422棵便标记一棵树。小智:我们最好算算需要移走多少棵树,好让园林工人校对。小丁:我怎么
- C++ 离散化 算法 (详解)+ 例题
喝可乐的布偶猫
算法学习笔记算法c++数据结构
1、性质把无限空间中有限的个体映射到有限的空间中去,以此提高算法的空间效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的压缩。适用范围:数的跨度很大,用的数很稀疏例如:值域:1~10^9,个数:10^5,值域很大,但是用到个数相对很少,这个时候就可以离散化比如:将a[i]:13100200050000//这里需要注意可以离散化的前提是数组元素必须是有序的 i:01 2 3
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 牛客周赛 Round 28 F
Xing_ke309
算法数据结构
F.小红统计区间(hard)题目链接为前缀和枚举右端点看有多少个左端点满足条件,即在一个数轴上找的的个数。可以利用树状数组区间查询,查找中满足条件的前缀和。具体操作为先查找,再把自身在数轴上对应的数的个数加一。所以统计时没有统计自身对答案的影响。当前操作为第位时,则数轴上只记录了的前缀和。由于前缀和过大,形成的数轴过长,采用离散化。将所有前缀和由小到大排序并去重,构成新数轴。由于在数轴上可能没有直
- 代码源每日一题Div.1 (301~307)
xhyu61
做题笔记算法学习算法贪心算法动态规划acm竞赛深度优先
301-连续子序列题目链接简单的动态规划题目,先将所有数进行一个离散化,然后dp。dp[i]dp[i]dp[i]表示这个位置为结尾的最长符合要求的子序列的长度。对于每一个位置,找这个数对应的离散化编号的上一个数在什么位置,如果那个数目前为止还没有出现,或者那个数与这个数的差不是111,dp[i]=1dp[i]=1dp[i]=1;否则设上一个数最后一次出现在lstlstlst,那么dp[i]=dp[
- Python建模复习 :数据挖掘技术理论
啾啾二一
第二部分数据挖掘技术理论2.1数据分析方法论KDD知识发现KnowledgeDiscoveryfromDatabase:数据清理、数据集成、数据选择、数据变换(正规化、泛化、离散化)、数据挖掘、模式评估、知识表示。CRISP-DM(cross-industryprocessfordatamining):业务理解、数据理解、数据准备、建模、模型评估和模型发布。SEMMA:抽样Sample、探索Exp
- 【北邮鲁鹏老师计算机视觉课程笔记】05 Hough 霍夫变换
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】05Hough霍夫变换1投票策略考虑到外点率太高①让直线上的每一点投票②希望噪声点不要给具体的任何模型投票,即噪声点不会有一致性的答案③即使被遮挡了,也能把直线找出来参数空间离散化直线相当于就是m,b两个参数点给参数空间投票找到投票最多的参数点给参数空间投票上图,图像空间的一条直线在参数空间是一个点上图:图像空间的一个点对应参数空间的一条直线因为在图像空间确定一个
- 基础算法(排序,二分,高精度加减乘除,前缀和与差分,离散化,位运算,双指针等)介绍
赵英英俊
算法总结算法c++数据结构
基础算法文章目录基础算法排序快速排序归并排序二分算法整数二分浮点数二分高精度加减乘除高精度加法高精度减法高精度乘法高精度除法前缀和与差分一维前缀和二维前缀和一维差分二维差分双指针算法位运算离散化区间合并代码模板排序快速排序时间复杂度为nlogn级别主要思想是每次选取一个基准(一般是以中间为基准),然后从数组的头尾开始进行比较,保证基准的左边都是小于基准的数,基准的右边都是大于基准的数,然后通过同样
- Acwing算法基础1——快排 归并 二分 前缀和 差分 双指针 位运算 离散化 区间和
倩mys
数据结构与算法算法数据结构java
文章目录1、快排----分治2、归并——分治3、二分法4、高精度(C++)5、前缀和(一维、二维)6、差分(一维、二维)7、双指针算法8、位运算9、离散化10、区间和流程:1.理解思想,背模板2.刷题目3.重复3~5遍2021.9.111、快排----分治主要思想:1.确定分界点:q[l]q[(l+r)/2]q[r]随机2.调整范围:x放右边3.递归:处理左右两端难点:划分快排不稳定,如何变得稳定
- 常用代码模板1——基础算法——排序 二分 高精度 前缀和与差分 双指针算法 位运算 离散化 区间合并
結城
c++
排序二分高精度前缀和与差分双指针算法位运算离散化区间合并快速排序算法模板——模板题AcWing785.快速排序voidquick_sort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[l+r>>1];while(ix);if(i=r)return;intmid=l+r>>1;merge_sort(q,l,mid);merge_sort(q
- 一、基础算法之排序、二分、高精度、前缀和与差分、双指针算法、位运算、离散化、区间合并内容。
樱花的浪漫
C++与算法题系列算法数据结构
1.快速排序算法思想:选择基准元素,比基准元素小的放左边,比基准元素大的放右边。每趟至少一个元素排好。每一趟实现步骤:low>=high,返回,排序完成选取基准元素x=a[low],i=low,j=high当iusingnamespacestd;constintN=100010;intn;intq[N];voidquick_sort(inta[],intlow,inthigh){if(low>=h
- Java蓝桥杯备考---4.算法基础(二)
不要再睡
蓝桥杯算法职场和发展
1.离散化把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。例如原数组的范围是[1,le9],而数组大小仅为le5,那么说明元素值的“种类数”最多也就
- leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】
lianxuhanshu_
基础算法leetcode算法
原题链接:3027.人员站位的方案数II题目描述:给你一个nx2的二维数组points,它表示二维平面上的一些点坐标,其中points[i]=[xi,yi]。我们定义x轴的正方向为右(x轴递增的方向),x轴的负方向为左(x轴递减的方向)。类似的,我们定义y轴的正方向为上(y轴递增的方向),y轴的负方向为下(y轴递减的方向)。你需要安排这n个人的站位,这n个人中包括liupengsay和小羊肖恩。你
- Open CASCADE学习|点和曲线的相互转化
老歌老听老掉牙
OpenCASCADE学习OpenCASCADEc++
目录1、把曲线离散成点1.1按数量离散1.2按长度离散1.3按弦高离散2、由点合成曲线2.1B样条插值2.2B样条近似1、把曲线离散成点计算机图形学中绘制曲线,无论是绘制参数曲线还是非参数曲线,都需要先将参数曲线进行离散化,通过离散化得到一组离散化的点集,然后再将点集发送给图形渲染管线进行处理,最终生成我们想要的曲线。OpenCASCADE中提供了GCPnts包。利用GCPnts包中提供的类,我们
- 数据分析之数据预处理、分析建模、可视化
诗雅颂
数据分析ai爬虫数据采集分析建模可视化
数据分析通常需要经历三个主要步骤:数据预处理、分析建模和可视化1、数据预处理:数据预处理是指在进行数据分析之前对原始数据进行清洗、转换和整理的过程。其目的是确保数据的质量和可用性,以便后续的分析能够产生准确有效的结果。以下是一些常见的数据预处理方法:a.数据清洗:去除重复、缺失或错误的数据,修正数据的格式和结构等,以提高数据的准确性。b.数据转换:对数据进行归一化、标准化、离散化等处理,使得数据更
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- 扫描线(板子整理) 矩形面积并与矩形周长并
why_not_fly
算法c++数据结构
前置知识:离散化,线段树基础即可,难度不大,重在思维矩形面积并扫描线,矩形面积并(洛谷)https://www.luogu.com.cn/problem/P5490为了归并区间中的关系(每一段都是连起来的,所以要右端点偏移映射,后面在代码中体现)与常规维护懒标记不同,这里是向上维护的,最后返回一个tree.len[1],就是根节点的值,就是答案(图片来源于董晓老师的博客)即每一段区间右边那个位置(
- 第十一周学习报告
三冬四夏会不会有点漫长
算法竞赛#算法训练周报学习
知识点复习了一些基本算法,二分,前缀和,差分,双指针,离散化,位运算,归并排序,高精度等比赛情况无做题情况1.CFdiv2A(10题):A.WeGotEverythingCovered!,A.SatisfyingConstraints,A.LeastProduct,A.RatingIncrease,A.ConstructiveProblems,A.BinaryImbalance,A.Halloum
- 保序离散化 前缀和 去重 pair AcWing 802. 区间和
三冬四夏会不会有点漫长
#acwing算法基础算法竞赛算法c++数据结构
#includeusingnamespacestd;constintN=3e5+10;inta[N],s[N];typedefpairPII;vectoralls;vectoradd,query;intfind(intx){intl=0,r=alls.size();while(l>1;if(alls[mid]>=x)r=mid;elsel=mid+1;}returnr+1;}intmain(){i
- AcWing算法学习笔记:基础算法(快速排序 + 归并排序 + 二分 + 高精度 +前缀和差分 + 双指针算法 + 位运算 + 离散化 + 区间和并)
一只可爱的小猴子
算法学习笔记
基础算法一、快速排序①快速排序⭐②第k个数二、归并排序①归并排序②逆序对的数量⭐三、二分①数的范围⭐②数的三次方根⭐四、高精度①高精度加法②高精度减法③高精度乘法④高精度除法五、前缀和差分①前缀和②子矩阵的和③差分④差分矩阵六、双指针算法①最长连续不重复子序列②数组元素的目标和③判断子序列七、位运算(二进制数中1的个数)⭐八、离散化(区间和)⭐九、区间合并一、快速排序①快速排序⭐算法至于关键步骤第
- 机器学习数据预处理--连续变量分箱
恒c
机器学习人工智能
文章目录原理概念等宽分箱等频分箱聚类分箱有监督分箱原理概念连续变量分箱即对连续型字段进行离散化处理,也就是将连续型字段转化为离散型字段。连续字段的离散过程如下所示:连续变量的离散过程也可以理解为连续变量取值的重新编码过程,在很多时候,连续变量的离散化也被称为连续变量分箱。需要注意的是,离散之后字段的含义将发生变化,原始字段Income代表用户真实收入状况,而离散之后的含义就变成了用户收入的等级划分
- 数字图像处理中的拉普拉斯变换
小鱼tuning
算法图像处理
拉普拉斯变换是数字图像处理中的一种技术,其原理是基于拉普拉斯算子,用于检测图像中的边缘和突出细节。具体原理如下:1.拉普拉斯算子:拉普拉斯算子是一种数学算子,用于计算图像的二阶导数。在数字图像处理中,拉普拉斯算子用于离散化图像,并通过有限差分来近似计算二阶导数。2.离散拉普拉斯算子:在数字图像处理中,图像被离散成像素网格。拉普拉斯算子通过以下3x3的离散核(模板)来近似计算二阶导数:0101-41
- AutoEncoder自动编码器、VAE变分自编码器、VQVAE量子化(离散化)的自编码器
丁希希哇
AIGC阅读学习算法深度学习人工智能pytorch
文章目录AutoEncoder自动编码器(一)AutoEncoder的基本架构(二)AutoEncoder的概率理解(三)AutoEncoder的局限VAE变分自编码器(VariationalAutoEncoder)(一)VAE简介(二)VAE的概率理解(三)VAE与AE(三)VAE与GAN(四)VAE的损失函数VQVAE量子化(离散化)的自编码器(一)VQVAE简介(二)VQVAE与VAE(三)
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的