CF#678 D. Iterated Linear Function (快速幂+逆元)

题目点我点我点我


D. Iterated Linear Function
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Consider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x)) for n > 0. For the given integer values AB,n and x find the value of g(n)(x) modulo 109 + 7.

Input

The only line contains four integers ABn and x (1 ≤ A, B, x ≤ 109, 1 ≤ n ≤ 1018) — the parameters from the problem statement.

Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long longinteger type and in Java you can use long integer type.

Output

Print the only integer s — the value g(n)(x) modulo 109 + 7.

Examples
input
3 4 1 1
output
7
input
3 4 2 1
output
25
input
3 4 3 1
output
79






解题思路:可以根据题目推导出公式:


g(n)(x)  = (A^n*x + (A^(n-1) + A^(n-2) + A^(n-3) + ...A) * B) % 1000000007



前面直接快速幂解决,后面是等比数列求和,注意乘法逆元。


/* ***********************************************
┆  ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓ 马 ┏━┛ ┆
┆  ┃ 勒 ┃  ┆      
┆  ┃ 戈 ┗━━━┓ ┆
┆  ┃ 壁     ┣┓┆
┆  ┃ 的草泥马  ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;

#define rep(i,a,b) for (int i=(a),_ed=(b);i<=_ed;i++)
#define per(i,a,b) for (int i=(b),_ed=(a);i>=_ed;i--)
#define pb push_back
#define mp make_pair
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define inf_add 0x3f3f3f3f
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
#define MS0(X) memset((X), 0, sizeof((X)))
#define SelfType int
SelfType Gcd(SelfType p,SelfType q){return q==0?p:Gcd(q,p%q);}
SelfType Pow(SelfType p,SelfType q){SelfType ans=1;while(q){if(q&1)ans=ans*p;p=p*p;q>>=1;}return ans;}
#define Sd(X) int (X); scanf("%d", &X)
#define Sdd(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define Sddd(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define reunique(v) v.resize(std::unique(v.begin(), v.end()) - v.begin())
#define all(a) a.begin(), a.end()
typedef pair pii;
typedef pair pll;
typedef vector vi;
typedef vector vll;
inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,rx=getchar();return ra*fh;}
//#pragma comment(linker, "/STACK:102400000,102400000")

LL quick_mod(LL x,LL k)
{
    LL res = 1;
    while(k)
    {
        if(k&1)res = res * x % mod;
        x = x * x % mod;
        k >>= 1;
    }
    return res;
}


int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);
	ios::sync_with_stdio(0);
	cin.tie(0);
	LL a,b,n,x;
	scanf("%I64d%I64d%I64d%I64d",&a,&b,&n,&x);
	if(a==1) printf("%I64d\n",(x + n%mod*b)%mod);
	else
    {
        LL res = quick_mod(a,n)*x%mod;
        res += (quick_mod(a,n)-1) * quick_mod(a-1,mod-2) % mod * b;
        res = (res%mod + mod) % mod;
        printf("%I64d\n",res);
    }

	return 0;
}


你可能感兴趣的:(~~~~~acm~~~~~,——Codeforces——,逆元)