【NOIP2012】开车旅行(倍增)

题面

Description

小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i, j] = |Hi − Hj|。
旅行过程中,小A 和小B轮流开车,第一天小A 开车,之后每天轮换一次。他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小B的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出X公里,他们就会结束旅行。
在启程之前,小A 想知道两个问题:
1.对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B的行驶路程为0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小A 开车行驶的路程总数与小B行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
2.对任意给定的 X=Xi和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。

Input

第一行包含一个整数 N,表示城市的数目。
第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海拔高度,即H1,H2,……,Hn,且每个Hi都是不同的。
第三行包含一个整数 X0。
第四行为一个整数 M,表示给定M组Si和 Xi。
接下来的M行,每行包含2个整数Si和Xi,表示从城市 Si出发,最多行驶Xi公里。

Output

输出共M+1 行。
第一行包含一个整数S0,表示对于给定的X0,从编号为S0的城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值最小。
接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si和Xi下小A行驶的里程总数和小B 行驶的里程总数。

Sample Input

样例1:
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
样例2:
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7

Sample Output

样例1:
1
1 1
2 0
0 0
0 0
样例2:
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0

题解

NOIP2012真的都是好题。。。
因为无论从那个点开始
接下来的选择都是固定的
因此,可以首先预处理出每一次的选择
继续观察,若干次的移动之后的地点也是不会变的
照样可以预处理出来
因此,很容易想到倍增
在跳倍增的时候,一边跳地点,一边跳时间,即可算出最终答案。
第一问就依次查询每一个位置
第二问,每次查询即可

#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define MAX 101000
#define INF 50000000000
#define ll long long
inline ll read()
{
    ll x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
//p[i][j]表示从i出发经过2^j轮后的地点
//a[i][j]表示从i出发经过2^j轮后的路程
//b[i][j]表示从i出发经过2^j轮后的B的路程
struct Sort
{
    int v,id;
}dd[MAX];
inline bool operator <(Sort a,Sort b)
{
    return a.vDis||(dis[i][0]==Dis&&dd[l1].vDis||(dis[i][1]==Dis&&dd[l1].v=0;--i)
    {
        if(p[s][i]&&a[s][i]+b[s][i]<=x)
        {
            x-=a[s][i]+b[s][i];
            ans1+=a[s][i];
            ans2+=b[s][i];
            s=p[s][i];
        }
    }
    //检查A还能不能单独跳一步
    if(pos[s][1]&&dis[s][1]<=x)ans1+=dis[s][1];
}
int main()
{
    N=read();
    for(int i=1;i<=N;++i)dd[i].v=d[i]=read(),dd[i].id=i;
    sort(&dd[1],&dd[N+1]);
    for(int i=1;i<=N;++i)id[dd[i].id]=i;
    for(int i=1;i<=N;++i)nst[i]=i+1;
    for(int i=1;i<=N;++i)lst[i]=i-1;
    lst[0]=nst[N+1]=0;
    nst[0]=1;lst[N+1]=N;
    Pre();
    int X0=read();
    double nn=2147483647.0;
    int A=0;
    for(int i=1;i<=N;++i)
    {
        long long ans1,ans2;
        double tt;
        Query(i,X0,ans1,ans2);
        if(ans2==0)continue;
        if(ans2!=0)tt=(ans1*1.0)/(ans2*1.0);
        else tt=1.0;
        if(nn>tt){nn=tt;A=i;}
        else if(nn==tt)if(d[i]>d[A])A=i;
    }
    printf("%d\n",A);
    M=read();
    int cnt=0;
    while(M--)
    {
        cnt++;
        ll s=read(),x=read();
        long long ans1=0,ans2=0;
        Query(s,x,ans1,ans2);
        printf("%lld %lld\n",ans1,ans2);
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjyyb/p/7531809.html

你可能感兴趣的:(【NOIP2012】开车旅行(倍增))