java实现图的最小生成树(MST)的普利姆(Prim)算法

/******************************************************************************
 *  Compilation:  javac PrimMST.java
 *  Execution:    java PrimMST filename.txt
 *  Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
 *                IndexMinPQ.java UF.java In.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/largeEWG.txt
 *
 *  Compute a minimum spanning forest using Prim's algorithm.
 *
 *  %  java PrimMST tinyEWG.txt 
 *  1-7 0.19000
 *  0-2 0.26000
 *  2-3 0.17000
 *  4-5 0.35000
 *  5-7 0.28000
 *  6-2 0.40000
 *  0-7 0.16000
 *  1.81000
 *
 *  % java PrimMST mediumEWG.txt
 *  1-72   0.06506
 *  2-86   0.05980
 *  3-67   0.09725
 *  4-55   0.06425
 *  5-102  0.03834
 *  6-129  0.05363
 *  7-157  0.00516
 *  ...
 *  10.46351
 *
 *  % java PrimMST largeEWG.txt
 *  ...
 *  647.66307
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The PrimMST class represents a data type for computing a
 *  minimum spanning tree in an edge-weighted graph.
 *  The edge weights can be positive, zero, or negative and need not
 *  be distinct. If the graph is not connected, it computes a minimum
 *  spanning forest, which is the union of minimum spanning trees
 *  in each connected component. The weight() method returns the 
 *  weight of a minimum spanning tree and the edges() method
 *  returns its edges.
 *  

* This implementation uses Prim's algorithm with an indexed * binary heap. * The constructor takes time proportional to E log V * and extra space (not including the graph) proportional to V, * where V is the number of vertices and E is the number of edges. * Afterwards, the weight() method takes constant time * and the edges() method takes time proportional to V. *

* For additional documentation, * see Section 4.3 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * For alternate implementations, see {@link LazyPrimMST}, {@link KruskalMST}, * and {@link BoruvkaMST}. * * @author Robert Sedgewick * @author Kevin Wayne */ public class PrimMST { private static final double FLOATING_POINT_EPSILON = 1E-12; private Edge[] edgeTo; // edgeTo[v] = shortest edge from tree vertex to non-tree vertex private double[] distTo; // distTo[v] = weight of shortest such edge private boolean[] marked; // marked[v] = true if v on tree, false otherwise private IndexMinPQ pq; /** * Compute a minimum spanning tree (or forest) of an edge-weighted graph. * @param G the edge-weighted graph */ public PrimMST(EdgeWeightedGraph G) { edgeTo = new Edge[G.V()]; distTo = new double[G.V()]; marked = new boolean[G.V()]; pq = new IndexMinPQ(G.V()); for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; for (int v = 0; v < G.V(); v++) // run from each vertex to find if (!marked[v]) prim(G, v); // minimum spanning forest // check optimality conditions assert check(G); } // run Prim's algorithm in graph G, starting from vertex s private void prim(EdgeWeightedGraph G, int s) { distTo[s] = 0.0; pq.insert(s, distTo[s]); while (!pq.isEmpty()) { int v = pq.delMin(); scan(G, v); } } // scan vertex v private void scan(EdgeWeightedGraph G, int v) { marked[v] = true; for (Edge e : G.adj(v)) { int w = e.other(v); if (marked[w]) continue; // v-w is obsolete edge if (e.weight() < distTo[w]) { distTo[w] = e.weight(); edgeTo[w] = e; if (pq.contains(w)) pq.decreaseKey(w, distTo[w]); else pq.insert(w, distTo[w]); } } } /** * Returns the edges in a minimum spanning tree (or forest). * @return the edges in a minimum spanning tree (or forest) as * an iterable of edges */ public Iterable edges() { Queue mst = new Queue(); for (int v = 0; v < edgeTo.length; v++) { Edge e = edgeTo[v]; if (e != null) { mst.enqueue(e); } } return mst; } /** * Returns the sum of the edge weights in a minimum spanning tree (or forest). * @return the sum of the edge weights in a minimum spanning tree (or forest) */ public double weight() { double weight = 0.0; for (Edge e : edges()) weight += e.weight(); return weight; } // check optimality conditions (takes time proportional to E V lg* V) private boolean check(EdgeWeightedGraph G) { // check weight double totalWeight = 0.0; for (Edge e : edges()) { totalWeight += e.weight(); } if (Math.abs(totalWeight - weight()) > FLOATING_POINT_EPSILON) { System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight()); return false; } // check that it is acyclic UF uf = new UF(G.V()); for (Edge e : edges()) { int v = e.either(), w = e.other(v); if (uf.connected(v, w)) { System.err.println("Not a forest"); return false; } uf.union(v, w); } // check that it is a spanning forest for (Edge e : G.edges()) { int v = e.either(), w = e.other(v); if (!uf.connected(v, w)) { System.err.println("Not a spanning forest"); return false; } } // check that it is a minimal spanning forest (cut optimality conditions) for (Edge e : edges()) { // all edges in MST except e uf = new UF(G.V()); for (Edge f : edges()) { int x = f.either(), y = f.other(x); if (f != e) uf.union(x, y); } // check that e is min weight edge in crossing cut for (Edge f : G.edges()) { int x = f.either(), y = f.other(x); if (!uf.connected(x, y)) { if (f.weight() < e.weight()) { System.err.println("Edge " + f + " violates cut optimality conditions"); return false; } } } } return true; } /** * Unit tests the PrimMST data type. */ public static void main(String[] args) { In in = new In(args[0]); EdgeWeightedGraph G = new EdgeWeightedGraph(in); PrimMST mst = new PrimMST(G); for (Edge e : mst.edges()) { StdOut.println(e); } StdOut.printf("%.5f\n", mst.weight()); } }


你可能感兴趣的:(java实现图的最小生成树(MST)的普利姆(Prim)算法)