- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- python ray分布式_取代 Python 多进程!伯克利开源分布式框架 Ray
weixin_39946313
pythonray分布式
Ray由伯克利开源,是一个用于并行计算和分布式Python开发的开源项目。本文将介绍如何使用Ray轻松构建可从笔记本电脑扩展到大型集群的应用程序。并行和分布式计算是现代应用程序的主要内容。我们需要利用多个核心或多台机器来加速应用程序或大规模运行它们。网络爬虫和搜索所使用的基础设施并不是在某人笔记本电脑上运行的单线程程序,而是相互通信和交互的服务的集合。云计算承诺在所有维度上(内存、计算、存储等)实
- OPENCL之SIMT与SIMD在架构上的主要区别是什么?
糯米宝宝
gpuopencv
SIMT(单指令多线程)与SIMD(单指令多数据)在架构上的主要区别体现在以下几个方面:执行单元的组织方式:SIMD:采用的是多数据流架构,即同一条指令同时作用于多个数据元素。这种架构特别适合于多媒体应用等数据密集型运算。SIMT:采用的是多线程架构,即同一条指令由多个线程并行执行。每个线程可以有不同的分支行为和执行路径,从而实现线程级的并行计算。软件暴露的信息:SIMD:向软件公开SIMD宽度(
- Python | 使用Joblib模块加快任务处理速度
python收藏家
pythonpython
在本文中,我们将了解如何通过使用Joblib模块在Python中并行执行代码来大幅减少大型代码的执行时间。Joblib模块简介Joblib是一个用于Python的开源库,它提供了一些用于并行计算和内存映射的工具,旨在提高科学计算和数据分析的效率。Python中的Joblib模块特别用于使用Pipelines并行执行任务,而不是一个接一个地顺序执行任务。Joblib模块允许用户通过利用设备中存在的所
- 【并行计算】Strong scaling和weak Scaling
栏杆拍遍看吴钩
pytorch并行计算
可以从这个角度来区分:StrongScaling在扩展时是壮壮的,即使增加负载,也不需要调整机器。WeakScaling在扩展时是弱弱的,如果要增加负载,也要同步增加机器。Strong的目的是为了知道当前的机器所能够提供的最大并行能力。Weak的目的是为了保证当前的负载均衡性一致的情况下比较不同数量机器的并行效果。
- NUMA架构
weixin_34220623
数据库内存管理操作系统
最近在学习.NET的并行计算技术,学到一个服务器NUMA架构,NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,在系统延迟方面表现都很优秀。Windows一向都没有在NUMA架构上有多少表现机会,AMD的多路系统大多也会用在UNIX/Linux上。Intel如期进入了NUMA架构的怀抱,英特尔最新的服务器处理器至强5500是一项重大的结构变革。与上一代至强处理器相比,至强5500采用了
- 模式转变-并行编程方面的设计注意事项
guoxiaoqian8028
并行计算
本文以VisualStudio工具的预发布版为基础。文中的所有信息均有可能发生变更。本文将介绍以下内容:并行计算并发编程性能提高本文使用了以下技术:多线程目录并发和并行结构化多线程数据并行性数据流数据并行性单程序,多数据并发数据结构总结从1986到2002年,微处理器的性能每年提高了52%。这一惊人的技术进步源自晶体管成本依据摩尔法则不断地缩减,以及处理器厂商在工程方面的出色表现。微软的研究员Ji
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- ISP(图像信号处理器)是什么?
FoGoiN
嵌入式硬件单片机物联网
由于刚接触到开发版,认识到了图像处理器(imageprocessor),又名imageprocessingengine,imageprocessingunit(IPU),imagesignalprocessor(ISP)。和电脑的GPU类似,通常采并行计算。功能:Bayertransformation图像传感器(就是光电转换器)中的光电二极管(吸收光子产生电流)其实是无法识别颜色的,为了能够识别颜
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- Python 多线程和多进程用法
SmallerFL
Python相关python服务器linux多进程多线程
文章目录1.Python多进程1.1常见用法1.创建进程2.进程池3.进程间通信4.进程同步1.2结合进度条显示2.Python多线程2.1常见用法1.使用线程池2.2结合进度条显示1.Python多进程1.1常见用法multiprocessing是Python标准库中的一个模块,用于在多核或多处理器环境中并行执行任务。它提供了一种便捷的方法来创建和管理多个进程,以实现并行计算。multiproc
- 《C++与新兴硬件技术的完美融合:开启未来科技新篇章》
程序猿阿伟
c++科技开发语言
在科技飞速发展的今天,新兴硬件技术不断涌现,为软件开发带来了前所未有的机遇和挑战。C++作为一种强大而高效的编程语言,如何更好地与这些新兴硬件技术结合,成为了众多开发者关注的焦点。首先,在与GPU(图形处理单元)的结合方面,C++展现出了巨大的潜力。GPU拥有强大的并行计算能力,能够快速处理大量的数据和复杂的计算任务。通过CUDA和OpenCL等技术,C++开发者可以充分利用GPU的性能优势,实现
- Unity3D UI Toolkit数据动态绑定详解
Thomas_YXQ
uijava开发语言Unity游戏开发前端c#
前言在Unity3D中,ComputeShader是一种强大的工具,用于在GPU上执行并行计算任务,这些任务通常涉及大量的数据处理,如图像处理、物理模拟等。然而,由于GPU的并行特性,ComputeShader中的线程(也称为工作项)之间默认是不进行同步的。这意味着每个线程都是独立运行的,且无法直接访问其他线程的数据或执行状态,除非通过特定的机制进行通信。对惹,这里有一个游戏开发交流小组,大家可以
- PyTorch深度学习实战(26)—— PyTorch与Multi-GPU
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
当拥有多块GPU时,可以利用分布式计算(DistributedComputation)与并行计算(ParallelComputation)的方式加速网络的训练过程。在这里,分布式是指有多个GPU在多台服务器上,并行指一台服务器上的多个GPU。在工作环境中,使用这两种方式加速模型训练是非常重要的技能。本文将介绍PyTorch中分布式与并行的常见方法,读者需要注意这二者的区别,并关注它们在使用时的注意
- C语言中的多线程编程:POSIX线程库(Pthreads)入门与实战(一)
JJJ69
学习C语言吧开发语言c语言
目录一、引言背景介绍文章目的与读者定位二、夽线程基础概念线程与进程的关系并发与并行的区别多线程的优势与挑战三、POSIX线程库(Pthreads)简介POSIX标准与Pthreads规范Pthreads的兼容性与移植性总结一、引言背景介绍随着计算机硬件技术的飞速发展,多核处理器已经成为现代计算设备的标准配置。这种架构变革使得单个处理器芯片能够容纳多个执行核心,从而显著提升了并行计算能力。面对这样的
- 并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹
2401_85763639
pytorch人工智能python
并行计算的艺术:PyTorch中torch.cuda.nccl的多GPU通信精粹在深度学习领域,模型的规模和复杂性不断增长,单GPU的计算能力已难以满足需求。多GPU并行计算成为提升训练效率的关键。PyTorch作为灵活且强大的深度学习框架,通过torch.cuda.nccl模块提供了对NCCL(NVIDIACollectiveCommunicationsLibrary)的支持,为多GPU通信提供
- HPC&AI并行计算集群Slurm作业调度系统对通用资源(GRES)的调度
技术瘾君子1573
并行计算AI并行计算Slurm调度系统MPS管理GPU管理MIG多实例管理GPU切片
一、概述Slurm支持定义和调度任意通用RESources的功能(GRES)。为特定GRES类型启用了其他内置功能,包括图形处理单元(GPU)、CUDA多进程服务(MPS)设备,并通过可扩展的插件机制进行分片。二、配置默认情况下,群集的配置中未启用任何GRES。您必须在slurm.conf配置文件中明确指定要管理的GRES。的配置参数兴趣是GresTypes和Gres。有关详细信息,请参见slur
- CUDA指南-CUDA简介与开发环境搭建
小虾米欸
CUDA指南CUDA
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的并行计算平台和编程模型,它允许开发者利用NVIDIAGPU进行高效的通用计算任务。以下是对CUDA的详细介绍:GPU与CPU的不同GPU(图形处理单元)与CPU(中央处理单元)在设计和功能上有所不同。GPU拥有更多的处理核心,专为并行处理设计,适合执行大量数据的并行计算任务。相比之下,CPU拥有较少的
- 【赵渝强老师】Spark中的RDD
赵渝强老师
大数据技术spark大数据分布式
RDD(ResilientDistributedDataset)叫做弹性分布式数据集,它是Spark中最基本、也是最重要的的数据模型。它由分区组成,每个分区被一个Spark的Worker从节点处理,从而支持分布式的并行计算。RDD通过检查点Checkpoint的方式提供自动容错的功能,并且具有位置感知性调度和可伸缩的特性。通过RDD也提供缓存的机制,可以极大地提高数据处理的速度。 视频讲解如
- 曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?
Chauvin912
大模型行业调研科普transformer架构深度学习
曼巴大战变形金刚:号称超越Transformer架构的Mamba架构是什么?Mamba是一种新兴的深度学习架构,旨在解决长序列数据的建模问题。它通过将状态空间模型(StateSpaceModels,SSM)与选择性机制、并行计算等方法相结合,实现了高效的长序列处理。这篇博客将深入探讨Mamba架构的各个组成部分,解释其背后的原理。1.状态空间模型(SSM)1.1状态空间模型的基本原理状态空间模型是
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- 【GPU驱动开发】-GPU架构简介
怪怪王
GPU驱动驱动开发GPUAIchatgpt架构
前言不必害怕未知,无需恐惧犯错,做一个Creator!GPU(GraphicsProcessingUnit,图形处理单元)是一种专门用于处理图形和并行计算的处理器。GPU系统架构通常包括硬件和软件层面的组件。一、总体流程应用程序请求图形操作:应用程序通过图形API(如OpenGL、Vulkan)发送图形操作请求。图形API调用GPU驱动程序:图形API将请求传递给GPU驱动程序。GPU驱动程序解释
- Transformer结构介绍和Pyotrch代码实现
肆十二
Pytorch语法transformer深度学习人工智能
Transformer结构介绍和Pyotrch代码实现关注B站查看更多手把手教学:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)基本结构介绍Transformer结构是近年来自然语言处理(NLP)领域的重要突破,它完全基于注意力机制(AttentionMechanism)来实现,克服了传统RNN模型无法并行计算以及容易丢失长距离依赖信息的问题。Transformer
- 什么是Rust 语言
chunmiao3032
rust开发语言后端
Rust是一种专注于性能和内存安全的系统编程语言,其设计目标包括提供:零开销抽象、移动语义、内存安全、线程无数据竞争、类型安全和实时gc等功能。Rust使用RAII(ResourceAcquisitionIsInitialization)管理资源,通过所有权系统以编译时检查内存安全。它强调零开销的抽象和安全的并行计算。Rust语言的前景非常广阔,包括以下几个方面:系统编程:由于Rust的出色性能和
- CUDA与CUDNN 关系
XF鸭
小知识caffe深度学习人工智能
CUDA与cuDNN1、什么是CUDACUDA(ComputeUnifiedDeviceArchitecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。2、什么是CUDNNNVIDIAcuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIAcuDNN可以集成到更高级别的机器学
- Unity中的Compute Shader
popcorn丶
渲染游戏开发unity图像处理
Unity中的ComputeShader前言一、定义二、创建三、computer代码解析四、c#调用方式五、计算关系六、平台支持七、引用前言游戏开发中,dot编程在处理大数量级的运算应用已经越来越广泛了,而GPU本身对大规模数据的并行计算已经越来越强了,因此现在许多游戏处理大量物体的计算可以利用GPU这一特性,加快并发计算速度,ComputeShader就是专门利用这一特性的。提示:以下是本篇文章
- TiDB 7.5.0 LTS 高性能数据批处理方案
TiDB_PingCAP
tidb分布式云原生数据库
过去,TiDB由于不支持存储过程、大事务的使用也存在一些限制,使得在TiDB上进行一些复杂的数据批量处理变得比较复杂。TiDB在面向这种超大规模数据的批处理场景,其能力也一直在演进,其复杂度也变得越来越低:○从TiDB5.0开始,TiFlash支持MPP并行计算能力,在大批量数据上进行聚合、关联的查询性能有了极大的提升○到了TiDB6.1版本,引入了BATCHDML(https://docs.pi
- AI芯片技术架构有哪些?FPGA芯片定义及结构分析
Hack电子
人工智能架构fpga开发
点击蓝字关注我们关注、星标公众号,精彩内容每日送达来源:网络素材ai芯片技术架构有哪些?AI芯片的技术架构可以根据其设计方式和特点进行分类。以下是几种常见的AI芯片技术架构:GPU(图形处理器)架构:GPU最初是用于图形渲染和游戏处理的,但由于其高度并行的特性,逐渐被应用于深度学习计算。GPU架构采用多个计算单元(CUDA核心)进行并行计算,能够高效地执行浮点运算和矩阵计算。NVIDIA的Tens
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&