插入排序算法、时间复杂度

1.  插入排序算法

插入排序算法、时间复杂度_第1张图片

void sortt(int a[],int length) // 插入排序算法
{
	for (int i = 0; i < length-1; i++)
	{
		if (a[i]>a[i + 1])
		{
			int temp = a[i+1];
			int j = i+1-1;
			while ( j>=0 && a[j]>temp )
			{
				a[j + 1] = a[j];
				j--;
			}
			a[j + 1] = temp;
		}
	}
}

2. 算法的时间复杂度 

    我们假设计算机运行一行基础代码需要执行一次运算。

int aFunc(void) {
    printf("Hello, World!\n");      //  需要执行 1 次
    return 0;       // 需要执行 1 次
}

那么上面这个方法需要执行 2 次运算

int aFunc(int n) {
    for(int i = 0; i

这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。

我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。
此时为了 估算算法需要的运行时间 和 简化算法分析,我们引入时间复杂度的概念。

定义: 存在常数 c,使得当 N >= c 时 T(N) <= f(N),表示为 T(n) = O(f(n)) 。
如图:

插入排序算法、时间复杂度_第2张图片

当 N >= 2 的时候,f(n) = n^2 总是大于 T(n) = n + 2 的,于是我们说 f(n) 的增长速度是大于或者等于 T(n) 的,也说 f(n) 是 T(n) 的上界,可以表示为 T(n) = O(f(n))。

因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。

算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。

显然如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的,但是因为第一个 f(n) 的增长速度与 T(n) 是最接近的,所以第一个是最好的选择,所以我们说这个算法的复杂度是 O(n^2) 。

PS: 分析的时候可以省去常数次,只保留最高次即可 (有 * 乘法的话还需要用到 log 计算)

你可能感兴趣的:(插入排序算法、时间复杂度)