纯干货,源码6步曲,带你解析完整的ThreadPoolExecutor

ThreadPoolExecutor源码解析

今天为了给一个朋友做一份文档,从源码层级解析一下ThreadPoolExecutor。然后就直接在源码上写备注的形式解析,看这篇文章的朋友,就和看源码一样,一步步的跟着向下执行的看就好

1、常用变量的解释

// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29 private static final int COUNT_BITS = Integer.SIZE - 3; // 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1 private static final int CAPACITY   = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits // 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED private static final int RUNNING    = -1 << COUNT_BITS; private static final int SHUTDOWN   =  0 << COUNT_BITS; private static final int STOP       =  1 << COUNT_BITS; private static final int TIDYING    =  2 << COUNT_BITS; private static final int TERMINATED =  3 << COUNT_BITS; ​ // Packing and unpacking ctl // 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0 private static int runStateOf(int c)     { return c & ~CAPACITY; } // 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0 private static int workerCountOf(int c) { return c & CAPACITY; } // 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值 private static int ctlOf(int rs, int wc) { return rs | wc; } ​ /* * Bit field accessors that don't require unpacking ctl. * These depend on the bit layout and on workerCount being never negative. */ // 8. `runStateLessThan()`,线程池状态小于xx private static boolean runStateLessThan(int c, int s) {    return c < s; } // 9. `runStateAtLeast()`,线程池状态大于等于xx private static boolean runStateAtLeast(int c, int s) {    return c >= s; }
纯干货,源码6步曲,带你解析完整的ThreadPoolExecutor_第1张图片

 

2、构造方法

public ThreadPoolExecutor(int corePoolSize,                          int maximumPoolSize,                          long keepAliveTime,                          TimeUnit unit,                          BlockingQueue workQueue,                          ThreadFactory threadFactory,                          RejectedExecutionHandler handler) {    // 基本类型参数校验    if (corePoolSize < 0 ||        maximumPoolSize <= 0 ||        maximumPoolSize < corePoolSize ||        keepAliveTime < 0)        throw new IllegalArgumentException();    // 空指针校验    if (workQueue == null || threadFactory == null || handler == null)        throw new NullPointerException();    this.corePoolSize = corePoolSize;    this.maximumPoolSize = maximumPoolSize;    this.workQueue = workQueue;    // 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中    this.keepAliveTime = unit.toNanos(keepAliveTime);    this.threadFactory = threadFactory;    this.handler = handler; }

3、提交执行task的过程

public void execute(Runnable command) {    if (command == null)        throw new NullPointerException();    /*     * Proceed in 3 steps:     *     * 1. If fewer than corePoolSize threads are running, try to     * start a new thread with the given command as its first     * task. The call to addWorker atomically checks runState and     * workerCount, and so prevents false alarms that would add     * threads when it shouldn't, by returning false.     *     * 2. If a task can be successfully queued, then we still need     * to double-check whether we should have added a thread     * (because existing ones died since last checking) or that     * the pool shut down since entry into this method. So we     * recheck state and if necessary roll back the enqueuing if     * stopped, or start a new thread if there are none.     *     * 3. If we cannot queue task, then we try to add a new     * thread. If it fails, we know we are shut down or saturated     * and so reject the task.     */    int c = ctl.get();    // worker数量比核心线程数小,直接创建worker执行任务    if (workerCountOf(c) < corePoolSize) {        if (addWorker(command, true))            return;        c = ctl.get();   }    // worker数量超过核心线程数,任务直接进入队列    if (isRunning(c) && workQueue.offer(command)) {        int recheck = ctl.get();        // 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。        // 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。        if (! isRunning(recheck) && remove(command))            reject(command);        // 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0        else if (workerCountOf(recheck) == 0)            addWorker(null, false);   }    // 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。    // 这儿有3点需要注意:    // 1. 线程池不是运行状态时,addWorker内部会判断线程池状态    // 2. addWorker第2个参数表示是否创建核心线程    // 3. addWorker返回false,则说明任务执行失败,需要执行reject操作    else if (!addWorker(command, false))        reject(command); }

4、addworker源码解析

private boolean addWorker(Runnable firstTask, boolean core) {    retry:    // 外层自旋    for (;;) {        int c = ctl.get();        int rs = runStateOf(c); ​        // 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价        // (rs > SHUTDOWN) ||        // (rs == SHUTDOWN && firstTask != null) ||        // (rs == SHUTDOWN && workQueue.isEmpty())        // 1. 线程池状态大于SHUTDOWN时,直接返回false        // 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false        // 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false        // Check if queue empty only if necessary.        if (rs >= SHUTDOWN &&            ! (rs == SHUTDOWN &&               firstTask == null &&               ! workQueue.isEmpty()))            return false; ​        // 内层自旋        for (;;) {            int wc = workerCountOf(c);            // worker数量超过容量,直接返回false            if (wc >= CAPACITY ||                wc >= (core ? corePoolSize : maximumPoolSize))                return false;            // 使用CAS的方式增加worker数量。            // 若增加成功,则直接跳出外层循环进入到第二部分            if (compareAndIncrementWorkerCount(c))                break retry;            c = ctl.get();  // Re-read ctl            // 线程池状态发生变化,对外层循环进行自旋            if (runStateOf(c) != rs)                continue retry;            // 其他情况,直接内层循环进行自旋即可            // else CAS failed due to workerCount change; retry inner loop       }   }    boolean workerStarted = false;    boolean workerAdded = false;    Worker w = null;    try {        w = new Worker(firstTask);        final Thread t = w.thread;        if (t != null) {            final ReentrantLock mainLock = this.mainLock;            // worker的添加必须是串行的,因此需要加锁            mainLock.lock();            try {                // Recheck while holding lock.                // Back out on ThreadFactory failure or if                // shut down before lock acquired.                // 这儿需要重新检查线程池状态                int rs = runStateOf(ctl.get()); ​                if (rs < SHUTDOWN ||                   (rs == SHUTDOWN && firstTask == null)) {                    // worker已经调用过了start()方法,则不再创建worker                    if (t.isAlive()) // precheck that t is startable                        throw new IllegalThreadStateException();                    // worker创建并添加到workers成功                    workers.add(w);                    // 更新`largestPoolSize`变量                    int s = workers.size();                    if (s > largestPoolSize)                        largestPoolSize = s;                    workerAdded = true;               }           } finally {                mainLock.unlock();           }            // 启动worker线程            if (workerAdded) {                t.start();                workerStarted = true;           }       }   } finally {        // worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作        if (! workerStarted)            addWorkerFailed(w);   }    return workerStarted; }

5、线程池worker任务单元

private final class Worker    extends AbstractQueuedSynchronizer    implements Runnable {    /**     * This class will never be serialized, but we provide a     * serialVersionUID to suppress a javac warning.     */    private static final long serialVersionUID = 6138294804551838833L; ​    /** Thread this worker is running in. Null if factory fails. */    final Thread thread;    /** Initial task to run. Possibly null. */    Runnable firstTask;    /** Per-thread task counter */    volatile long completedTasks; ​    /**     * Creates with given first task and thread from ThreadFactory.     * @param firstTask the first task (null if none)     */    Worker(Runnable firstTask) {        setState(-1); // inhibit interrupts until runWorker        this.firstTask = firstTask;        // 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker        this.thread = getThreadFactory().newThread(this);   } ​    /** Delegates main run loop to outer runWorker */    public void run() {        runWorker(this);   } ​    // 省略代码... }

6、核心线程执行逻辑-runworker

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;    // 调用unlock()是为了让外部可以中断    w.unlock(); // allow interrupts    // 这个变量用于判断是否进入过自旋(while循环)    boolean completedAbruptly = true;    try {        // 这儿是自旋        // 1. 如果firstTask不为null,则执行firstTask;        // 2. 如果firstTask为null,则调用getTask()从队列获取任务。        // 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待        while (task != null || (task = getTask()) != null) {            // 这儿对worker进行加锁,是为了达到下面的目的            // 1. 降低锁范围,提升性能            // 2. 保证每个worker执行的任务是串行的            w.lock();            // If pool is stopping, ensure thread is interrupted;            // if not, ensure thread is not interrupted. This            // requires a recheck in second case to deal with            // shutdownNow race while clearing interrupt            // 如果线程池正在停止,则对当前线程进行中断操作            if ((runStateAtLeast(ctl.get(), STOP) ||                 (Thread.interrupted() &&                  runStateAtLeast(ctl.get(), STOP))) &&                !wt.isInterrupted())                wt.interrupt();            // 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。            // 这两个方法在当前类里面为空实现。            try {                beforeExecute(wt, task);                Throwable thrown = null;                try {                    task.run();               } catch (RuntimeException x) {                    thrown = x; throw x;               } catch (Error x) {                    thrown = x; throw x;               } catch (Throwable x) {                    thrown = x; throw new Error(x);               } finally {                    afterExecute(task, thrown);               }           } finally {                // 帮助gc                task = null;                // 已完成任务数加一                w.completedTasks++;                w.unlock();           }       }        completedAbruptly = false;   } finally {        // 自旋操作被退出,说明线程池正在结束        processWorkerExit(w, completedAbruptly);   } }

怎么样,不知道大家看明白了没有,可能对于有一些朋友来说有那么一点点的困难,但是没关系啊
既然已经说道thread了,咱也别落下什么,相应的视频合文档已经整理完成

关注公众号:Java架构师联盟,每日更新技术好文,添加小助手:msbxq2020免费获取

部分资料已经上传到我的git仓库中:有需要的可以下载

https://gitee.com/biwangsheng/mxq

你可能感兴趣的:(纯干货,源码6步曲,带你解析完整的ThreadPoolExecutor)