当时写的一个识别白线的程序,还不算完整,后面要自己用程序算出两天线之间中点的坐标,并反馈坐标信息回来,跟底层通讯,做一个闭环。
#include //ros标准库头文件
#include //C++标准输入输出库
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
static const std::string OPENCV_WINDOW1 = "Image window"; //定义输入窗口名称
static const std::string OPENCV_WINDOW2 = "Gray window"; //定义输出窗口名称
static const std::string OPENCV_WINDOW3 = "Canny window"; //定义输出窗口名称
static const std::string OPENCV_WINDOW4 = "Hough window"; //定义输出窗口名称
//定义一个转换的类
class RGB_GRAY
{
private:
ros::NodeHandle nh_; //定义ROS句柄
image_transport::ImageTransport it_; //定义一个image_transport实例
image_transport::Subscriber image_sub_; //定义ROS图象接收器
image_transport::Publisher image_pub_; //定义ROS图象发布器
public:
RGB_GRAY()
:it_(nh_) //构造函数
{
image_sub_ = it_.subscribe("/cv_camera/image_raw", 1, &RGB_GRAY::convert_callback, this); //定义图象接受器,订阅话题是“camera/rgb/image_raw”
image_pub_ = it_.advertise("/image_converter/output_video", 1); //定义图象发布器
//初始化输入输出窗口
cv::namedWindow(OPENCV_WINDOW1);
cv::namedWindow(OPENCV_WINDOW2);
cv::namedWindow(OPENCV_WINDOW3);
cv::namedWindow(OPENCV_WINDOW4);
}
~RGB_GRAY() //析构函数
{
cv::destroyWindow(OPENCV_WINDOW1);
cv::destroyWindow(OPENCV_WINDOW2);
cv::destroyWindow(OPENCV_WINDOW3);
cv::destroyWindow(OPENCV_WINDOW4);
}
/*
这是一个ROS和OpenCV的格式转换回调函数,将图象格式从sensor_msgs/Image ---> cv::Mat
*/
void convert_callback(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImagePtr cv_ptr1; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr2; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr3; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr4; // 声明一个CvImage指针的实例
try
{
cv_ptr1 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr2 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr3 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr4 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
}
catch(cv_bridge::Exception& e) //异常处理
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
image_process1(cv_ptr1->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process2(cv_ptr2->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process3(cv_ptr3->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process3(cv_ptr3->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
}
/*这是图象处理的主要函数,一般会把图像处理的主要程序写在这个函数中。这里的例子只是一个彩色图象到灰度图象的转化*/
void image_process1(cv::Mat img1)//这里是灰度处理
{
cv::Mat img_out1;
cv::cvtColor(img1, img_out1, CV_RGB2GRAY); //转换成灰度图象
cv::imshow(OPENCV_WINDOW1, img1);
cv::imshow(OPENCV_WINDOW2, img_out1);
cv::waitKey(5);
}
void image_process2(cv::Mat img2)//这里是边缘检测
{
cv::Mat dstframe;
cv::Mat edge;
cv::Mat grayVideo;
dstframe.create(img2.size(),img2.type());
cv::cvtColor(img2,grayVideo,CV_BGR2GRAY);
cv::blur(grayVideo,edge,cvSize(15,15));
cv::Canny(edge, edge, 0, 30,3);
cv::imshow(OPENCV_WINDOW3, edge);
cv::waitKey(5);
}
void image_process3(cv::Mat img3)
{
cv::Mat dst2;
cv::Mat cdst2;
cv::Canny(img3, dst2, 50, 200, 3);
cv::cvtColor(dst2, cdst2, CV_GRAY2BGR);//灰度化
vector lines;
HoughLines(dst2, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )//将求得的线条画出来
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst2, pt1, pt2, Scalar(0,0,255), 2, CV_AA);
cv::imshow(OPENCV_WINDOW4, cdst2);
cout<<"x="<<(pt1.x+pt2.x)/2<
当时写的一个识别白线的程序,还不算完整,后面要自己用程序算出两天线之间中点的坐标,并反馈坐标信息回来,跟底层通讯,做一个闭环。
#include //ros标准库头文件
#include //C++标准输入输出库
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
static const std::string OPENCV_WINDOW1 = "Image window"; //定义输入窗口名称
static const std::string OPENCV_WINDOW2 = "Gray window"; //定义输出窗口名称
static const std::string OPENCV_WINDOW3 = "Canny window"; //定义输出窗口名称
static const std::string OPENCV_WINDOW4 = "Hough window"; //定义输出窗口名称
//定义一个转换的类
class RGB_GRAY
{
private:
ros::NodeHandle nh_; //定义ROS句柄
image_transport::ImageTransport it_; //定义一个image_transport实例
image_transport::Subscriber image_sub_; //定义ROS图象接收器
image_transport::Publisher image_pub_; //定义ROS图象发布器
public:
RGB_GRAY()
:it_(nh_) //构造函数
{
image_sub_ = it_.subscribe("/cv_camera/image_raw", 1, &RGB_GRAY::convert_callback, this); //定义图象接受器,订阅话题是“camera/rgb/image_raw”
image_pub_ = it_.advertise("/image_converter/output_video", 1); //定义图象发布器
//初始化输入输出窗口
cv::namedWindow(OPENCV_WINDOW1);
cv::namedWindow(OPENCV_WINDOW2);
cv::namedWindow(OPENCV_WINDOW3);
cv::namedWindow(OPENCV_WINDOW4);
}
~RGB_GRAY() //析构函数
{
cv::destroyWindow(OPENCV_WINDOW1);
cv::destroyWindow(OPENCV_WINDOW2);
cv::destroyWindow(OPENCV_WINDOW3);
cv::destroyWindow(OPENCV_WINDOW4);
}
/*
这是一个ROS和OpenCV的格式转换回调函数,将图象格式从sensor_msgs/Image ---> cv::Mat
*/
void convert_callback(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImagePtr cv_ptr1; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr2; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr3; // 声明一个CvImage指针的实例
cv_bridge::CvImagePtr cv_ptr4; // 声明一个CvImage指针的实例
try
{
cv_ptr1 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr2 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr3 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
cv_ptr4 = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
}
catch(cv_bridge::Exception& e) //异常处理
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
image_process1(cv_ptr1->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process2(cv_ptr2->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process3(cv_ptr3->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
image_process3(cv_ptr3->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
}
/*这是图象处理的主要函数,一般会把图像处理的主要程序写在这个函数中。这里的例子只是一个彩色图象到灰度图象的转化*/
void image_process1(cv::Mat img1)//这里是灰度处理
{
cv::Mat img_out1;
cv::cvtColor(img1, img_out1, CV_RGB2GRAY); //转换成灰度图象
cv::imshow(OPENCV_WINDOW1, img1);
cv::imshow(OPENCV_WINDOW2, img_out1);
cv::waitKey(5);
}
void image_process2(cv::Mat img2)//这里是边缘检测
{
cv::Mat dstframe;
cv::Mat edge;
cv::Mat grayVideo;
dstframe.create(img2.size(),img2.type());
cv::cvtColor(img2,grayVideo,CV_BGR2GRAY);
cv::blur(grayVideo,edge,cvSize(15,15));
cv::Canny(edge, edge, 0, 30,3);
cv::imshow(OPENCV_WINDOW3, edge);
cv::waitKey(5);
}
void image_process3(cv::Mat img3)
{
cv::Mat dst2;
cv::Mat cdst2;
cv::Canny(img3, dst2, 50, 200, 3);
cv::cvtColor(dst2, cdst2, CV_GRAY2BGR);//灰度化
vector lines;
HoughLines(dst2, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )//将求得的线条画出来
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst2, pt1, pt2, Scalar(0,0,255), 2, CV_AA);
cv::imshow(OPENCV_WINDOW4, cdst2);
cout<<"x="<<(pt1.x+pt2.x)/2<
看着好烦,稍微简化了一下,我写代码的风格是代码量越少越好。可能坐标计算这里还需要改进。
#include //ros标准库头文件
#include //C++标准输入输出库
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
static const std::string OPENCV_WINDOW = "Hough window"; //定义输出窗口名称
//定义一个转换的类
class RGB_GRAY
{
private:
ros::NodeHandle nh_; //定义ROS句柄
image_transport::ImageTransport it_; //定义一个image_transport实例
image_transport::Subscriber image_sub_; //定义ROS图象接收器
image_transport::Publisher image_pub_; //定义ROS图象发布器
public:
RGB_GRAY()
:it_(nh_) //构造函数
{
image_sub_ = it_.subscribe("/cv_camera/image_raw", 1, &RGB_GRAY::convert_callback, this); //定义图象接受器,订阅话题是“camera/rgb/image_raw”
image_pub_ = it_.advertise("/image_converter/output_video", 1); //定义图象发布器
//初始化输入输出窗口
cv::namedWindow(OPENCV_WINDOW);
}
~RGB_GRAY() //析构函数
{
cv::destroyWindow(OPENCV_WINDOW);
}
/*这是一个ROS和OpenCV的格式转换回调函数,将图象格式从sensor_msgs/Image ---> cv::Mat */
void convert_callback(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImagePtr cv_ptr; // 声明一个CvImage指针的实例
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); //将ROS消息中的图象信息提取,生成新cv类型的图象,复制给CvImage指针
}
catch(cv_bridge::Exception& e) //异常处理
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
image_process(cv_ptr->image); //得到了cv::Mat类型的图象,在CvImage指针的image中,将结果传送给处理函数
}
/*这是图象处理的主要函数,一般会把图像处理的主要程序写在这个函数中。这里的例子只是一个彩色图象到灰度图象的转化*/
void image_process(cv::Mat img)//这里是灰度处理
{
Mat dst;
Mat cdst;
Canny(img, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);//灰度化
vector lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )//将求得的线条画出来
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 2, CV_AA);
cout<<"x="<<(pt1.x+pt2.x)/2<