POJ1410Intersection【判断线段与矩形相交+点在矩形内的简单判定】

Language:Default

Intersection

Time Limit: 1000MS

 

Memory Limit: 10000K

Total Submissions: 12880

 

Accepted: 3362

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle. 

An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1) 

 
Figure 1: Line segment does not intersect rectangle 

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid. 

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom 

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

14 9 11 2 1 5 7 1

Sample Output

F


 

题意:判断一条线段是否和矩形相交;

想到了直线可能完全在矩形内部但却没有完全理解题意The terms top left and bottom right do not imply any ordering of coordinates;注意它们的位置关系不确定

#include
#include
#include
#define eps 1e-8
using namespace std;
struct point{
	double x,y;
};
struct line{
	point a,b;
}A[100010];
double MAX(double a,double b){
	return a>b?a:b;
}
double MIN(double a,double b){
	return aMAX(A[b].a.x,A[b].b.x)||MIN(A[a].a.y,A[a].b.y)>MAX(A[b].a.y,A[b].b.y)||MIN(A[b].a.x,A[b].b.x)>MAX(A[a].a.x,A[a].b.x)||MIN(A[b].a.y,A[b].b.y)>MAX(A[a].a.y,A[a].b.y))      
    return false;      
    double h,i,j,k;      
    h=(A[a].b.x-A[a].a.x)*(A[b].a.y-A[a].a.y)-(A[a].b.y-A[a].a.y)*(A[b].a.x-A[a].a.x);      
    i=(A[a].b.x-A[a].a.x)*(A[b].b.y-A[a].a.y)-(A[a].b.y-A[a].a.y)*(A[b].b.x-A[a].a.x);      
    j=(A[b].b.x-A[b].a.x)*(A[a].a.y-A[b].a.y)-(A[b].b.y-A[b].a.y)*(A[a].a.x-A[b].a.x);      
    k=(A[b].b.x-A[b].a.x)*(A[a].b.y-A[b].a.y)-(A[b].b.y-A[b].a.y)*(A[a].b.x-A[b].a.x);      
    return h*i<=eps&&j*k<=eps;      
}      
int main()
{
	int t,i,j,k;
	double xleft,ytop,xright,ybottom;
	double x1,y1,x2,y2;
	scanf("%d",&t);
	while(t--){
		scanf("%lf%lf%lf%lf",&A[0].a.x,&A[0].a.y,&A[0].b.x,&A[0].b.y);
		scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
		xleft=MIN(x1,x2);xright=MAX(x1,x2);
		ybottom=MIN(y1,y2);ytop=MAX(y1,y2);
		A[1].a.x=xleft;A[1].a.y=ybottom;A[1].b.x=xleft;A[1].b.y=ytop;
		A[2].a.x=xleft;A[2].a.y=ytop;A[2].b.x=xright;A[2].b.y=ytop;
		A[3].a.x=xright;A[3].a.y=ytop;A[3].b.x=xright;A[3].b.y=ybottom;
		A[4].a.x=xright;A[4].a.y=ybottom;A[4].b.x=xleft;A[4].b.y=ybottom;
		for(i=1;i<=4;++i){
			if(judge(0,i))break;
		}
		bool flag=false;
		if(A[0].a.x<=xright&&A[0].a.x>=xleft&&A[0].a.y>=ybottom&&A[0].a.y<=ytop)flag=true;
		if(A[0].b.x<=xright&&A[0].b.x>=xleft&&A[0].b.y>=ybottom&&A[0].b.y<=ytop)flag=true; 
		if(i>4&&flag==0)
			printf("F\n");
		else 
			printf("T\n");
	}
	return 0;
}

你可能感兴趣的:(计算几何)