You are given a permutation p=[p1,p2,…,pn] of integers from 1 to n. Let’s call the number m (1≤m≤n) beautiful, if there exists two indices l,r (1≤l≤r≤n), such that the numbers [pl,pl+1,…,pr] is a permutation of numbers 1,2,…,m.
For example, let p=[4,5,1,3,2,6]. In this case, the numbers 1,3,5,6 are beautiful and 2,4 are not. It is because:
if l=3 and r=3 we will have a permutation [1] for m=1;
if l=3 and r=5 we will have a permutation [1,3,2] for m=3;
if l=1 and r=5 we will have a permutation [4,5,1,3,2] for m=5;
if l=1 and r=6 we will have a permutation [4,5,1,3,2,6] for m=6;
it is impossible to take some l and r, such that [pl,pl+1,…,pr] is a permutation of numbers 1,2,…,m for m=2 and for m=4.
You are given a permutation p=[p1,p2,…,pn]. For all m (1≤m≤n) determine if it is a beautiful number or not.
Input
The first line contains the only integer t (1≤t≤1000) — the number of test cases in the input. The next lines contain the description of test cases.
The first line of a test case contains a number n (1≤n≤2⋅105) — the length of the given permutation p. The next line contains n integers p1,p2,…,pn (1≤pi≤n, all pi are different) — the given permutation p.
It is guaranteed, that the sum of n from all test cases in the input doesn’t exceed 2⋅105.
Output
Print t lines — the answers to test cases in the order they are given in the input.
The answer to a test case is the string of length n, there the i-th character is equal to 1 if i is a beautiful number and is equal to 0 if i is not a beautiful number.
思维题,输入时我们记录每个数字的位置,然后枚举 1–m ,如果这些数的位置是不间断的,那么 m 就可以取得到;
代码:
#include
#define LL long long
#define pa pair
#define lson k<<1
#define rson k<<1|1
#define inf 0x3f3f3f3f
//ios::sync_with_stdio(false);
using namespace std;
const int N=100100;
const int M=4001000;
const LL mod=998244353;
int p[200100];
int main(){
ios::sync_with_stdio(false);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
int x;
for(int i=1;i<=n;i++){
cin>>x;
p[x]=i;
}
int mmin=p[1],mmax=p[1];
for(int i=1;i<=n;i++){
mmin=min(p[i],mmin);
mmax=max(p[i],mmax);
if(mmax-mmin+1==i) cout<<1;
else cout<<0;
}
cout<;
}
return 0;
}