图像处理之标记连通域并裁剪

PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。坐标经常用于二元组(x,y)。长方形则表示为四元组,前面是左上角坐标。例如:一个覆盖800x600的像素图像的长方形表示为(0,0,800,600)。

cropped = img.crop((left, upper, right, lower))#PIL裁剪图片实际上是左上角点(left, upper)与右下角点坐标(right, lower)

matplot默认使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。但是matplot会自动添加白色边框

# -*- coding: utf-8 -*-
"""
Created on Tue Mar 05 16:21:01 2019

@author: Manuel
"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from skimage import data,filters,segmentation,measure,morphology,color
from scipy.misc import imread
from PIL import Image

#加载并裁剪硬币图片
image =color.rgb2gray(imread("1551254703(1).jpg"))#data.coins()[50:-50, 50:-50]#返回一个数组

thresh=filters.threshold_otsu(image) #阈值分割,自动返回一个阈值
bw =morphology.closing(image>thresh,morphology.square(3))#(image > thresh, morphology.square(3)) #闭运算#将0,1转换成bool
#print(bw)
cleared = bw.copy()  #复制
#print(cleared)
segmentation.clear_border(cleared)  #清除与边界相连的目标物
label_image =measure.label(cleared)  #连通区域标记
borders = np.logical_xor(bw, cleared) #逻辑异或
label_image[borders] = -1     #?
image_label_overlay =color.label2rgb(label_image, image=image) #不同标记用不同颜色显示

#fig,(ax0)= plt.subplots(1, figsize=(8, 6))
fig,(ax1)= plt.subplots(1, figsize=(8, 6))#函数返回两个值,赋给fig和ax1
#fig,(ax0,ax1)= plt.subplots(1,2, figsize=(8, 6))
#ax0.imshow(cleared,plt.cm.gray)
ax1.imshow(image_label_overlay)
plt.axis('off')
plt.savefig('after_process.jpg')


i=2019030501#时间
for region in measure.regionprops(label_image): #循环得到每一个连通区域属性集
    #忽略小区域
    if region.area < 100:
        continue
    print(region.bbox)
    #绘制外包矩形
    minr, minc, maxr, maxc = region.bbox
    rect = mpatches.Rectangle((minc-10, minr-10), maxc - minc+20, maxr - minr+20,
                              fill=False, edgecolor='red', linewidth=2)# mpatches.Rectangle(矩形左上顶点坐标(x,y), width, height)
    print(rect)
    ax1.add_patch(rect)
    img=Image.open('1551254703(1).jpg')
    #矩形框坐标
    left=minc-10
    upper=minr-10
    right=maxc+10
    lower=maxr+10
    print(left, upper, right, lower)
    cropped = img.crop((left, upper, right, lower))# 
    cropped.save("cropped/%d.png"%i)
    i+=1
    
fig.tight_layout()
plt.show()

 

转载于:https://www.cnblogs.com/Manuel/p/10477614.html

你可能感兴趣的:(图像处理之标记连通域并裁剪)