C++中armadillo矩阵库使用说明

在http://blog.csdn.net/piaoxuezhong/article/details/58055709博文中介绍了eigen矩阵库的使用,这里介绍另一种矩阵库:armadillo~

Armadillo:C++下的Matlab替代品

armadillo是目前使用比较广的C++矩阵运算库之一,许多Matlab的矩阵操作函数都可以找到对应,这 对习惯了Matlab的人来说实在是非常方便,另外如果要将Matlab下做研究的代码改写成C++,使用Armadillo也会很方便。下面列了一些Armadillo的特性:
  • 支持整数,浮点数,和复数矩阵。
  • 支持矩阵逐元素操作,包括abs · conj · conv_to · eps · imag/real · misc functions (exp, log, pow, sqrt, round, sign, ...) · trigonometric functions (cos, sin, ...)等等。
  • 支持矩阵分块操作。
  • 支持对整体矩阵的操作diagvec · min/max · prod · sum · statistics (mean, stddev, ...) · accu · as_scalar · det · dot/cdot/norm_dot · log_det · norm · rank · trace等等。
  • Matlab用户,你甚至可以找到你熟悉的hist · histc · unique · cumsum · sort_index · find · repmat · linspace等函数。
  • 除了自带的矩阵基本运算之外,可自动检测是否安装有BLAS,或更快的 OpenBLAS, Intel MKL, AMD ACML,并使用他们替代自带基本运算实现。
  • 提供接口使用LAPACK进行矩阵分解运算,svd · qr · lu · fft等等。
  • 提供了稀疏矩阵类,支持常用操作,但暂时没有矩阵分解的实现。
可以使用OpenBLAS等库进行加速,安装教程参见:http://www.cnblogs.com/youthlion/archive/2012/05/15/2501465.html

vs下安装Armadillo

1、下载Armadillo,解压后把其中的include文件夹完整拷贝出来,放到某处,如D:\Armadillo;

2、修改D:\Armadillo\include\armadillo_bits\config.hpp,将

  #define ARMA_USE_LAPACK 
  #define ARMA_USE_BLAS

这两句取消注释。表示使用这两个库。

3、安装lapack和blas。实际上第一步中下载的压缩包里自带了这两个库,但是在vs2010中用这两个库会出现卡死现象,其他编译环境没有测试。可以去http://icl.cs.utk.edu/lapack-for-windows/clapack/index.html下载blas.lib,libf2c.lib,lapack.lib三个库,并在编译环境的额外依赖库中添加这三个库。(linker-> input-> additional dependencies)

C++中armadillo矩阵库使用说明_第1张图片

4、在编译器的include目录中添加include文件夹的路径以及第三步中三个库文件所在位置。如图:

2

矩阵类Mat简介:

Mat为模板类,其中type可以是:float, double, std::complex, std::complex, short, int, long, and unsigned versions of short, int, long等。为方便起见,Armadillo C++已经预定义了以下类型:

mat  =  Mat  //mat为double类型
fmat =  Mat   //fmat为float类型
cx_mat  =  Mat //cx_表示复数类型
cx_fmat =  Mat
umat =  Mat //相当于unsign int类型
imat  =  Mat //相当于int类型

创建方式:

mat() 
mat(n_rowsn_cols) 
mat(n_rowsn_colsfill_type) 
mat(size(X)) 
mat(size(X), fill_type) 
mat(mat) 
mat(sp_mat) 
mat(vec) 
mat(rowvec) 
mat(initializer_list) 
mat(string) 
mat(std::vector)   
cx_mat(mat,mat) 

实例:

mat A(5, 5, fill::randu);
double x = A(1,2);

mat B = A + A;
mat C = A * B;
mat D = A % B;

cx_mat X(A,B);

B.zeros();
B.set_size(10,10);
B.ones(5,6);

B.print("B:")

Armadillo中常见的功能说明:

Function/Variable Description
:n rows
:n cols
:n elem
number of rows (read only)
number of columns (read only)
total number of elements (read only)
(i)
(r, c)
[i]
.at(r, c)
:memptr()
access the i-th element, assuming a column-by-column layout
access the element at row
r and column c
as per (i), but no bounds check; use only after debugging
as per (r, c), but no bounds check; use only after debugging
obtain the raw memory pointer to element data
:in range(i)
:in range(r, c)
test whether the i-th element can be accessed
test whether the element at row
r and column c can be accessed
:reset()
:copy size(A)
:set size(rows, cols)
.reshape(rows, cols)
.resize(rows, cols)
set the number of elements to zero
set the size to be the same as matrix
A
change size to specified dimensions, without preserving data (fast)
change size to specified dimensions, with elements copied column-wise (slow)
change size to specified dimensions, while preserving elements & their layout (slow)
:ones(rows, cols)
:zeros(rows, cols)
:randu(rows, cols)
:randn(rows, cols)
:fill(k)
:for each( [ ] (double& val) f...g)
set all elements to one, optionally first resizing to specified dimensions
as above, but set all elements to zero
as above, but set elements to uniformly distributed random values in [0,1] interval
as above, but use a Gaussian/normal distribution with
µ = 0 and σ = 1
set all elements to be equal to
k
for each element, pass its reference to a lambda function (C++11 only)
:is empty()
:is finite()
:is square()
:is vec()
:is sorted()
test whether there are no elements
test whether all elements are finite
test whether the matrix is square
test whether the matrix is a vector
test whether the matrix is sorted
:has inf()
:has nan()
test whether any element is ±1
test whether any element is not-a-number
:begin()
:end()
:begin row(i)
:end row(j)
:begin col(i)
:end col(j)
iterator pointing at the first element
iterator pointing at the
past-the-end element
iterator pointing at first element of row
i
iterator pointing at one element past row j
iterator pointing at first element of column i
iterator pointing at one element past column j
:print(header)
:raw print(header)
print elements to the cout stream, with an optional text header
as per .print(), but do not change stream settings
:save(name, format)
:load(name, format)
store matrix in the specified file, optionally specifying storage format
retrieve matrix from the specified file, optionally specifying format
:diag(k)
:row(i)
:col(i)
:rows(a, b)
:cols(c, d)
:submat( span(a,b), span(c,d) )
:submat( p, q, size(A) )
:rows( vector of row indices )
:cols( vector of col indices )
:elem( vector of indices )
read/write access to k-th diagonal
read/write access to row
i
read/write access to column i
read/write access to submatrix, spanning from row a to row b
read/write access to submatrix, spanning from column c to column d
read/write access to submatrix spanning rows a to b and columns c to d
read/write access to submatrix starting at row p and col q with size same as matrix A
read/write access to rows corresponding to the specified indices
read/write access to columns corresponding to the specified indices
read/write access to matrix elements corresponding to the specified indices
:each row()
:each col()
:swap rows(p, q)
:swap cols(p, q)
:insert rows(row, X)
:insert cols(col, X)
:shed rows(first row, last row)
:shed cols(first col, last col)
repeat a vector operation on each row (eg. A.each row() += row vector)
repeat a vector operation on each column (eg.
A.each col() += col vector)
swap the contents of specified rows
swap the contents of specified columns
insert a copy of
X at the specified row
insert a copy of
X at the specified column
remove the specified range of rows
remove the specified range of columns
:min()
:max()
:index min()
:index max()
return minimum value
return maximum value
return index of minimum value
return index of maximum value

实例:

mat A = randu(10,10);
A(9,9) = 123.0;
double x = A.at(9,9);
double y = A[99];

vec p = randu(10,1);
p(9) = 123.0;
double z = p[9];

Armadillo与Matlab的对比:

Matlab & Octave Armadillo Notes
A(1, 1)
A(k, k)
A(0, 0)
A(k-1, k-1)
indexing in Armadillo starts at 0, following C++ convention
size(A,1)
size(A,2)
size(Q,3)
numel(A)
A.n rows
A.n cols
Q.n slices
A.n elem
member variables are read only
Q is a cube (3D array)
.n elem indicates the total number of elements
A(:, k)
A(k, :)
A(:, p:q)
A(p:q, :)
A(p:q, r:s)
A.col(k)
A.row(k)
A.cols(p, q)
A.rows(p, q)
A( span(p, q), span(r, s) )
read/write access to a specific column
read/write access to a specific row
read/write access to a submatrix spanning the specified cols
read/write access to a submatrix spanning the specified rows
A( span(first row, last row), span(first col, last col) )
Q(:, :, k)
Q(:, :, t:u)
Q.slice(k)
Q.slices(t, u)
Q is a cube (3D array)
A0
A:0
A.t() or trans(A)
A.st() or strans(A)
transpose (for complex matrices the conjugate is taken)
simple transpose (for complex matrices the conjugate is not taken)
A = zeros(size(A))
A = ones(size(A))
A = zeros(k)
A = ones(k)
A.zeros()
A.ones()
A = zeros(k,k)
A = ones(k,k)
set all elements to zero
set all elements to one
create a matrix with elements set to zero
create a matrix with elements set to one
C = complex(A,B) cx mat C = cx mat(A,B) construct a complex matrix out of two real matrices
A B
A
:B
A
:= B
A
n B
A = A
+ 1
A = A
- 1
A B
A
% B
A
= B
solve(A,B)
A
++
A--
% indicates element-wise multiplication
= indicates element-wise division
solve a system of linear equations
A = [ 1 2;
3 4; ]
A = f f 1, 2 g,
f 3, 4 g g
requires C++11 compiler
X = [ A B ]
X = [ A; B ]
X = join rows(A,B)
X = join cols(A,B)
A A.print(“A:”)
or
cout
<< A << endl
print the contents of a matrix to the standard output
save -ascii ‘A.dat’ A
load -ascii ‘A.dat’
A.save(“A.dat”, raw ascii)
A.load(“A.dat”, raw ascii)
Matlab/Octave matrices saved as ascii text are readable
by Armadillo (and vice-versa)
A = rand(2,3);
B = randn(4,5);
F =
f A; B g;
mat A = randu(2,3);
mat B = randn(4,5);
field
<mat> F(2,1);
F(0,0) = A; F(1,2) = B;
randu generates uniformly distributed random numbers
the field class can store multiple varying size matrices

综合测试程序:

#include 
#include 

using namespace std;
using namespace arma;


int main(int argc, char** argv)
{
	cout<<"Armadillo version: "<(A.memptr())<=BB);
	ZZ.print("ZZ:");


	// 2D field of matrices; 3D fields are also supported
	field F(4, 3);

	for (uword col = 0; col(2, 3);  // each element in field is a matrix
	}

	F.print("F:");

	return 0;
}

参考:

http://blog.csdn.net/jnulzl/article/details/46808515

http://www.cnblogs.com/einyboy/p/3852319.html

你可能感兴趣的:(C/C++,c++数据交互及常用数学库使用)