- 互联网大厂Java求职面试:基于Spring AI与云原生架构的RAG系统设计与实现
在未来等你
Java场景面试宝典JavaSpringAiRAG系统云原生
互联网大厂Java求职面试:基于SpringAI与云原生架构的RAG系统设计与实现场景背景郑薪苦,一位自称“代码界的段子手”的程序员,正在参加某互联网大厂的技术总监面试。面试官是技术总监李总,拥有丰富的架构设计经验,尤其擅长AI与大模型技术、云原生架构等领域。今天的面试主题围绕企业知识库与AI大模型的深度融合架构展开,重点探讨如何设计一个高性能、可扩展的RAG(Retrieval-Augmente
- mac OS上docker安装zookeeper
拉取镜像:$dockerpullzookeeper:3.5.73.5.7:Pullingfromlibrary/zookeeper3.5.7:Pullingfromlibrary/zookeeper3.5.7:Pullingfromlibrary/zookeepernomatchingmanifestforlinux/arm64/v8inthemanifestlistentries报错:由于时M3
- uniapp小程序无感刷新token
一只一只妖
uni-app小程序前端
request.js//request.jsimport{getApptoken,getStoredApptoken}from'./tokenRequest'//从合并模块导入//全局配置constMAX_RETRIES=1//最大重试次数constbaseURL='https://your-api.com'//请求队列和刷新状态letrequestsQueue=[]letisRefreshing
- 字典树前缀匹配
hi error.cn
经验分享
字典树前缀匹配什么是字典树(Trie)字典树(Trie),又称单词查找树或键树,是一种有序树结构的数据结构,常用于字符串关联查找的应用场景中。其主要特点是每个节点代表一个字符,并且从根到子节点的路径上的字符连起来构成所有在字典中的前缀。由于这种特性,字典树特别适合进行前缀匹配和自动补全等操作。字典树的基本结构字典树由节点(Node)和边(Edge)组成。每个节点表示一个字符或为空终结符,而边则代表
- 防抖在vue中应用
kkkkkkkkira
vue.js前端javascript
防抖(Debouncing)定义:在一段时间内只执行一次函数,常用于用户停止操作后才执行的场景。应用:适用于搜索输入框、窗口调整、搜索按钮等场景,避免频繁触发事件处理函以下伪代码…constdebouncedGetEntries:nullactivated:{debouncedGetEntries=this.createDebounce(this.getEntries,300)}constcrea
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])MultiQuery retriever详解?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1]
- OpenWebUI(11)源码学习-后端config.py配置文件
青苔猿猿
AI大模型openwebui学习env环境变量配置
目录文件名:`config.py`功能概述:主要功能点详解1.**初始化和数据库迁移**2.**数据库配置与持久化配置管理**✅SQLAlchemy模型类`Config`✅PersistentConfig类3.**OAuth登录配置**4.**用户权限与功能控制**5.**RAG(Retrieval-AugmentedGeneration)配置**6.**图像生成配置**7.**代码解释器配置**
- 基于Deepseek+RAG构建企业知识库:文档预处理与数据整理
大势下的牛马
搭建本地gpt人工智能RAGDeepseek知识库
在当今数字化时代,企业知识库的构建对于知识管理和高效决策至关重要。基于Deepseek+RAG(Retrieval-AugmentedGeneration)技术构建企业知识库,能够有效整合企业内外部知识资源,实现知识的快速检索和精准应用。而在这一过程中,文档预处理与数据整理是关键的基础环节,直接关系到知识库的质量和后续应用效果。一、文件预处理:格式转换与数据清洗(一)支持格式与转换要求优先格式:在
- linux 安装docker并部署Dify
Samale、随风
linuxdocker运维
环境:腾讯云Centos9Stream1.安装dockeryuminstalldocker#yuminstalldocker失败Error:Errordownloadingpackages:netavark-2:1.15.1-1.el9.x86_64:Cannotdownload,allmirrorswerealreadytriedwithoutsuccess#UpdateandCleanYumC
- net.ipv4.tcp_syn_retries
scan724
nginx
node2:/root#sysctl-p|grepsynerror:"net.bridge.bridge-nf-call-ip6tables"isanunknownkeyerror:"net.bridge.bridge-nf-call-iptables"isanunknownkeyerror:"net.bridge.bridge-nf-call-arptables"isanunknownkeyne
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- LangChain核心组件全解析
北辰alk
AIlangchain
文章目录一、核心架构组件1.模型I/O(ModelI/O)2.检索(Retrieval)3.记忆(Memory)4.链(Chains)5.代理(Agents)二、关键支持组件1.回调系统(Callbacks)2.文档加载器(DocumentLoaders)3.文本分割器(TextSplitters)4.向量存储(VectorStores)三、高级架构组件1.工具集成(Tools)2.工作流(Wor
- ARMv8 创建1、2、3级页表代码与注释
liuluyang530
armv8mmu页表
对下面的地址空间创建3级页表//level1table,4entries://00000000-3FFFFFFF,1GBblock,DDR//40000000-7FFFFFFF,1GBblock,DDR//80000000-BFFFFFFF,1GBblock,DDR//C0000000-FFFFFFFF,pointtolevel2tabel////level2table,512entries://
- ARMv8 创建3级页表示例
liuluyang530
FPGA验证ARMv8armv8页表mmu
最近在研究armv8页表创建过程,顺带做了一个如下形式的页表,//level1table,4entries://00000000-3FFFFFFF,1GBblock,DDR//40000000-7FFFFFFF,1GBblock,DDR//80000000-BFFFFFFF,1GBblock,DDR//C0000000-FFFFFFFF,pointtolevel2tabel////level2ta
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- LangChain4j如何自定义文档转换器实现数据清洗?
古斯塔夫歼星炮
LangChain4j提供了3种RAG(Retrieval-AugmentedGeneration,检索增强生成)实现,我们通常在原生或高级的RAG实现中,要对数据进行清洗,也就是将外接知识库中的原数据进行噪音去除,留下有价值的信息。例如在带有HTML标签的文本中,HTML标签就是噪音,他对于搜索结果是没有任何帮助,甚至会影响查询结果的,因此我们就需要将HTML标签进行清除。那问题来了,怎么进行数
- 安装Python3.12报错:HTTP 429 TOO MANY REQUESTS for url <https://mirrors.ustc.edu.cn/anaconda/pkgs/free/li
安装Python3.12报错(base)[xxx@hadoop104python_shell]$condacreate--namepythonThirteenpython=3.12报错如下:Retrievingnotices:…working…ERRORconda.notices.fetch:get_channel_notice_response(63):Requesterrorforchanne
- LangChain检索器的核心功能与查询逻辑源码级分析(81)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain检索器的核心功能与查询逻辑源码级分析I.检索器在LangChain中的定位与作用1.1检索器的核心价值在LangChain框架中,检索器(Retriever)承担着从海量数据中快速定位相关信息的关键角色。其核心价值在于将用户输入与知识库中的内容进行匹配,为语言模型的推理提供上下文支持。例如,在问答系统中,检索器会根据用户提问从文档库中筛选出最相关的段落,避免语言模型因缺乏背景信息
- 提示词工程推荐阅读论文
司南锤
LLMprompt人工智能自然语言处理
论文目录提示工程少样本提示思维链提示自洽性生成知识提示自动提示工程多模态提示提示技巧对抗提示提示工程PromptEngineeringforText-BasedGenerativeModels论文链接:https://arxiv.org/abs/2107.13586简介:本文概述了提示工程,并讨论了它在各种基于文本的生成模型中的应用。少样本提示Few-shotLearningwithRetriev
- RAG技术全面对比研究:探索最优检索增强生成策略
检索增强生成(RAG)技术全景解析:从基础到前沿在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-AugmentedGeneration(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮
- Advanced RAG:下一代检索增强生成技术详解
北辰alk
AI人工智能
文章目录一、核心演进维度二、关键技术组件1.智能检索子系统2.动态知识管理3.生成控制器三、核心增强技术1.递归检索(RecursiveRetrieval)2.假设性检索(HypotheticalDocumentEmbedding)3.自适应分块(AdaptiveChunking)四、生产级架构设计完整系统架构关键优化点五、典型应用场景1.专业领域问答系统2.企业知识中枢3.实时决策支持六、评估指
- 深入探索 Vanna:让数据库交互更智能
从零开始学习人工智能
数据库交互
深入探索Vanna:让数据库交互更智能在数字化时代,与数据库进行高效交互是许多开发者、数据分析师和企业面临的挑战。传统的SQL查询编写不仅需要对数据库结构有深入的了解,还需要花费大量的时间和精力来调试和优化。Vanna,一个基于Python的开源工具,通过结合检索增强(RetrievalAugmentation)和大型语言模型(LLM),为这一问题提供了一个创新的解决方案。本文将深入探讨Vanna
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 由浅入深:Python异步函数调用的艺术 - 从脚本到API架构设计
Ven%
pythonpython网络开发语言
文章目录引言:异步编程的新范式一、基础篇:事件循环中的直接调用1.1理解异步执行模型1.2简单调用示例1.3关键注意事项二、进阶篇:API接口中的异步调用2.1为什么需要API封装?2.2FastAPI实现示例2.3调用对比分析三、架构篇:分层设计的最佳实践3.1问题:紧耦合的陷阱3.2解决方案:三层架构设计3.2.1核心业务层(core/retrieval.py)3.2.2API接口层(api/
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)Text Splitters详解 ?
【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Re
- 深入探索MySQL C API:使用C语言操作MySQL数据库
努力学习的小赵同志
项目实战数据库mysql
目录引言一.MySQLCAPI简介二.MySQLCAPI核心函数2.1初始化和连接2.2配置和执行2.3处理结果2.4清理和关闭2.5错误处理三.MySQL使用过程四.实现CRUD操作4.1创建数据库并建立表编辑4.2添加数据(Create)编辑编辑编辑4.3修改数据(Update)编辑4.4删除数据(Delete)4.5查询数据(Retrieve)结语引言在软件开发中,数据库是存储、检索和操作数
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f