- 【视觉算法—视频目标跟踪】基于camshift实现视频目标实时追踪
明月下
视觉算法opencvpython音视频
本文代码功能:1.获取摄像头,实时显示2.鼠标获取第一帧中的目标roi区域3.在视频中实时对目标进行追踪。4.两种目标追踪的方式:‘meanshift’,‘camshift’5.保存视频代码准备新建test.py,复制以下代码:importcv2ascvimportnumpyasnpglobalmin_y,height,min_x,width#1代表打开外置摄像头,外置多个摄像头可依此枚举0,1,
- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
ATM006
目标检测
ppdet.metrics.mcmot_metricsWARNING:gt_filename'{}'ofMCMOTEvaluatorisnotexist,sotheMOTAwillbe-INFPaddleDetection/ppdet/metrics/mcmot_metrics.pyclassMCMOTEvaluator(object):def__init__(self,data_root,seq
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 吉格勒定理:你是一个有目标的人吗
Garey_8132
心理学家对哈佛大学的一批毕业生进行过一次人生目标跟踪调查。在调查中,研究人员发现:这些毕业生中有3%的人曾经确立了远大的目标;有10%的人有明确的短期目标;有60%的人目标不清晰,只求过好眼下的生活;还有27%的人几乎没有目标,完全是随遇而安。20年后,研究人员惊奇地发现:曾经树立过远大目标的3%的人,大都完成了自己的既定目标,事业有成;那10%的人虽没有卓尔不群,但也是社会中的上层人士;那60%
- 互联网加竞赛 基于深度学习的视频多目标跟踪实现
Mr.D学长
pythonjava
文章目录1前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postg
- 第九篇【传奇开心果系列】Python的OpenCV技术点案例示例:目标跟踪
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv目标跟踪
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言二、常用的目标跟踪功能、高级功能和增强跟踪技术介绍三、常用的目标跟踪功能示例代码四、OpenCV高级功能示例代码五、OpenCV跟踪目标增强技术示例代码六、归纳总结系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言目标跟踪:包括多目标跟踪、运动目标跟踪等功能。OpenCV是一个流行的计
- 【Visual Object Tracking】Learning notes
bryant_meng
CNN/Transformer读书笔记深度学习人工智能单目标跟踪VOT
DenseOpticalTracking:ConnectingtheDots参考学习来自:单目标跟踪Siamese系列网络:SiamFC、SiamRPN、one-shot跟踪、one-shotting单样本学习、DaSiamRPN、SiamRPN++、SiamMask单目标跟踪:跟踪效果/单目标跟踪:数据集处理/单目标跟踪:模型搭建/单目标跟踪:模型训练/单目标跟踪:模型测试单目标跟踪SiamMa
- 开源计算机视觉库OpenCV详解和实际运用案例
黑夜照亮前行的路
计算机视觉
开源计算机视觉库OpenCV是一个功能强大的工具,广泛应用于图像处理和计算机视觉领域。它包含许多优化算法,涵盖了图像处理、特征检测、目标跟踪等多个方面的功能。以下是对OpenCV的详细解释和一些实际应用案例。一、OpenCV的模块和功能OpenCV主要包含以下几个模块:核心功能模块:包含基本的图像处理和计算机视觉功能,如图像读取、显示、保存、变换等。图像处理模块:提供一系列图像处理算法,如滤波、边
- 室内定位系列
_49_
室内定位系列(一)——WiFi位置指纹(译)室内定位系列(二)——仿真获取RSS数据室内定位系列(三)——位置指纹法的实现(KNN)室内定位系列(四)——位置指纹法的实现(测试各种机器学习分类器)室内定位系列(五)——目标跟踪(卡尔曼滤波)室内定位系列(六)——目标跟踪(粒子滤波)
- 【目标跟踪】相机运动补偿
读书猿
目标跟踪自动驾驶目标检测
文章目录一、前言二、简介三、改进思路3.1、状态定义3.2、相机运动补偿3.3、iou和ReID融合3.4、改进总结四、相机运动补偿一、前言目前MOT(MultipleObjectTracking)最有效的方法仍然是Tracking-by-detection。今天给大家分享一篇论文BoT-SORT。论文地址,论文声称很牛*,各种屠榜,今天我们就来一探究竟。主要是分享论文提出的改进点以及分享在自己的
- 计算机视觉中的目标跟踪
小北的北
计算机视觉目标跟踪人工智能机器学习
从保护我们城市的监控系统到自动驾驶车辆在道路上行驶,目标跟踪已经成为计算机视觉中的一项基础技术。本文深入探讨了目标跟踪,探索了其基本原理、多样化的方法以及在现实世界中的应用。什么是目标跟踪?目标跟踪是深度学习在计算机视觉中广泛应用的重要应用之一。它指的是在动态环境中通过分析轨迹自动识别和跟踪物体,一旦初始位置已知。目标跟踪隐式地使用技术来识别和分类帧中的对象,并为每个对象关联一个唯一的标识。通常,
- 计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)
阿利同学
计算机视觉目标检测单目测距目标跟踪姿态识别实力分割摔倒检测
基于YOLOv5的无人机视频检测与计数系统摘要:无人机技术的快速发展和广泛应用给社会带来了巨大的便利,但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控,本文提出了一种基于YOLOv5的无人机视频检测与计数系统。该系统通过使用YOLOv5目标检测算法,能够准确地检测无人机,并实时计数其数量,提供给用户可视化的监控界面。原文链接:https://blog.csdn.net/ALiLiLiY
- 【目标跟踪】3D点云跟踪
读书猿
目标跟踪3d人工智能
文章目录一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance五
- 计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
毕设阿力
计算机视觉目标检测目标跟踪
车辆跟踪及测距该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了YOLOv5目标检测算法和DeepSORT目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!教程博客_传送门链接------->yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)-CSDN博客yolov5deepsort行人/车辆(检测+计数
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)
毕设阿力
YOLO目标跟踪目标检测
YOLOv5和DeepSORT是两种常用的计算机视觉技术,它们可以结合使用以实现行人和车辆的目标检测和跟踪。这种技术在交通监控、智慧城市等领域中具有广泛的应用。YOLOv5是一种基于深度学习的目标检测算法,它可以实现高效的目标检测和分类。与传统的目标检测算法相比,YOLOv5具有更快的检测速度和更高的准确率。而DeepSORT则是一种基于多目标跟踪的算法,它可以对相邻帧之间的目标进行跟踪,并输出目
- [MOT Challenge]官方生成多目标跟踪算法性能评价指标结果,解决test数据集没有gt文件和官网注册问题
Bartender_Jill
目标跟踪人工智能计算机视觉
文章目录⭐⭐⭐内容修正前言一、账号注册1.不要用QQ或163或gmail邮箱2.正常注册流程二、上传测试结果的流程1.使用步骤总结⭐⭐⭐内容修正我先前于2023/4/5日的时候在文章里提到:“提交到官网的文件需要包含测试后的训练集结果和测试后的测试集结果”,该结论经过测试后发现有误。个人于2023/12/8日在评论区的提醒下对MOTChallenge的内容提交进行了重新测试,发现提交到官网的文件并
- 数字信号处理7——点到向量的距离
注释远方
数字信号处理算法
目录一、前言二、点到线段的最短距离——向量法三、点到直线的最短距离——直线法四、点到直线最短距离——向量法一、前言其实在工程应用中很多情况下计算点到直线或者点到线段的距离,比如在unity3d游戏软件设计中计算任意形状路径起点和终点连线距离最远的点,比如用于雷达聚类后在多目标跟踪算法中计算哪个sensor距离track最近,另外还需要知道要计算的点位于直线的哪一侧,这些计算在游戏开发或者数字信号后
- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- FastDeploy项目简介,使用其进行(图像分类、目标检测、语义分割、文本检测|orc部署)
万里鹏程转瞬至
深度学习python库使用目标检测深度学习模型部署
FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具,支持云边端部署。提供超过160+Text,Vision,Speech和跨模态模型开箱即用的部署体验,并实现端到端的推理性能优化。包括物体检测、字符识别(OCR)、人脸、人像扣图、多目标跟踪系统、NLP、StableDiffusion文图生成、TTS等几十种任务场景,满足开发者多场景、多硬件、多平台的产业部署需求。1、FastD
- 基于卡尔曼滤波的平面轨迹优化
点PY
机器人导航定位c++卡尔曼滤波
文章目录概要卡尔曼滤波代码主函数代码CMakeLists.txt概要在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。优化的结果为黄色线。卡尔曼滤波代码#include
- RT-DETR原理与简介(干翻YOLO的最新目标检测项目)
毕设阿力
YOLO目标检测人工智能
RT-DETR(Real-TimeDetection,Embedding,andTracking)是一种基于Transformer的实时目标检测、嵌入和跟踪模型。它通过结合目标检测、特征嵌入和目标跟踪三个任务,实现了高效准确的实时目标识别和跟踪。RT-DETR的核心思想是将目标检测和目标跟踪这两个传统独立的任务进行统一建模,并利用Transformer网络进行特征提取和关联学习。相比于传统的两阶段
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 互联网加竞赛 基于机器视觉的车道线检测
Mr.D学长
pythonjava
文章目录1前言2先上成果3车道线4问题抽象(建立模型)5帧掩码(FrameMask)6车道检测的图像预处理7图像阈值化8霍夫线变换9实现车道检测9.1帧掩码创建9.2图像预处理9.2.1图像阈值化9.2.2霍夫线变换最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/d
- Unity之Cinemachine教程
passionyxt
Unityunity游戏引擎TimelineCinemachine相机跟随轨迹相机拍摄相机
前言Cinemachine是Unity引擎的一个高级相机系统,旨在简化和改善游戏中的相机管理。Cinemachine提供了一组强大而灵活的工具,可用于创建令人印象深刻的视觉效果,使开发人员能够更轻松地掌控游戏中的摄像机行为。主要功能和特性包括:1.虚拟摄像机系统:Cinemachine引入了虚拟摄像机的概念,允许开发人员使用相机组件的虚拟实例,而不必直接操作实际摄像机。2.目标跟踪:Cinemac
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR