- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 关于CNN
御风之星
1.理解卷积神经网络中的通道channel2.手把手教你用TensorFlow实现卷积神经网络3.tensorflow笔记:多层CNN代码分析
- 2021-07-02
fisher-nuc
tensorflow神经网络
基于TensorFlow搭建的几种经典的卷积神经网络注:本文是本人一门课程的期末大作业,在学习曹建老师(人工智能实践:TensorFlow笔记)的课程时记录的笔记。在进行整理后写的一篇小文章,具体详解可以在B站或者MOOC上搜索相关课程。课程网站:https://www.icourse163.org/learn/PKU-1002536002?tid=1003797005#/learn/announ
- (一)tensorflow笔记:Tensor数据类型
阿松丶
TensorFlow详细笔记tensorflowpython深度学习
常见的数据类型载体listnp.arraytf.tensorlist:可以存储不同数据类型,缺点不适合存储较大的数据,如图片np.array:解决同类型大数据数据的载体,方便数据运算,缺点是在深度学习之前就设计好的,不支持GPUtf.tensor:更适合深度学习,支持GPUTensor是什么scalar:1.1vector:[1.1],[1.1,2.2,……]matrix:[[1,2,3,],[4
- tensorflow笔记(编程理论部分)
orangehsc
tensorflowpython矩阵算法
TensorFlow笔记(编程理论部分)注:该笔记是阅读TensorFlow深度学习算法原理与编程实战第三章后做的框架梳理和部分个人见解。Tensorflow之名由Tensor和Flow组成,Tensor意为张量,可以理解为数组;Flow意为流动,指张量数据沿着边在不同的节点间流动并发生转化。1.1计算图TensorFlow中的各种操作,如加权求和,激活函数等,都被编排成一个图,称为计算图。计算图
- tensorflow笔记
_夏雨潇潇
#tensorflow笔记一个小例子#用numpy构造数据x_data=np.random.rand(100).astype(np.float32)y_data=x_data*0.1+0.3#tf.Variable定义了一个变量,random_uniform表示用随机的方式生成变量的初始值#1表示这个变量是一维的,变量的初始范围是-1到1Weights=tf.Variable(tf.random_
- TensorFlow笔记之卷积神经网络
Mr_Stutter
Python机器学习cnntensorflow深度学习
文章目录前言一、卷积神经网络CNN二、Tensorflow1.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化二、Tensorflow2.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化总结前言记录在tf1.x与tf2.x中使用卷积神经网络完成CIFAR-10数据集识别多分类任务,并进行断点续训。一、卷积神经网络CNN1、全连接网络:参数增多,速度减慢,过拟合2
- tensorflow笔记----3---ANN对mnist数据集分类
骑着蜗牛逛世界
tensorflow
tensorfllow实现两层MLP对mnist分类,第一层256个神经元,第二层128个神经元,输入784,输出10分类#!/usr/bin/python#-*-coding:utf-8-*-__author__="chunming"importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamnist=i
- Tensorflow笔记 3.3 反向传播
CCWUCMCTS
概念反向传播训练模型参数,在所有参数上使用梯度下降,使NN模型在训练数据上的损失函数最小。损失函数预测值与已知答案的差距。均方误差loss=tf.reduce_mean(tf.square(y_-y))反向传播的训练方法三种方式,见代码。学习率参数更新幅度。实战loss#coding:utf-8#0导入模块,生成模拟数据集。importtensorflowastfimportnumpyasnpBA
- DL with python(16)——tensorflow实现InceptionNet(GoogLeNet)
佟湘玉滴玉
Python深度学习深度学习python
本文涉及到的是中国大学慕课《人工智能实践:Tensorflow笔记》第五讲第14节的内容,对tensorflow环境下经典卷积神经网络的搭建进行介绍,其基础是DLwithpython(14)——tensorflow实现CNN的“八股”中的代码,将其中第三步的代码替换为本文中的代码均可直接运行,其他部分无需改变。经典的卷积神经网络有以下几种,这里介绍结构较为复杂的InceptionNet,其实现的方
- [tensorflow笔记]-tensorflow实现带mask的reduce_mean
黄然大悟
Tensorflow&Kerastensorflowreduce_meanmask平均
在使用tensorflow处理一些tensor时,有时需要对一个tensor取平均,可以使用tf.reduce_mean操作,但是这个没法处理带有mask的tensor数据,本文主要就是利用tensorflow的基本操作实现带mask的平均。tf.reduce_mean比如我们的数据是3维tensor,shape=(B,N,H),B表示batch_size、N表示最大长度、H表示向量维度,这样的3
- 学习tensorflow笔记1、梯度计算
weixin_51298826
tensorflow学习笔记tensorflowpython深度学习
1、梯度计算学习北京大学的mooc,记录笔记代码块:生成一个变量w初值为5,设定为可训练学习率lr大小会影响梯度下降的速度和步幅迭代次数epochimporttensorflowastfimportmatplotlib.pyplotaspltw=tf.Variable(tf.constant(5,dtype=tf.float32))lr=0.9epoch=40plt_show=[]forepoch
- Tensorflow笔记——tf.layers.dense的用法
·城府、
深度学习神经网络
1.tf.layers.dense的用法dense:相当于一个全连接层函数解释如下:tf.layers.dense(inputs,units,activation=None,use_bias=True,kernel_initializer=None,bias_initializer=tf.zeros_initializer(),kernel_regularizer=None,bias_regula
- TensorFlow笔记之神经网络完成多分类任务
Mr_Stutter
Python机器学习tensorflow神经网络分类
文章目录前言一、数据集调用二、Tensorflow1.x1.单隐藏层2.模型保存与调用三、Tensorflow2.x1.全连接层类2.keras建模总结前言对TensorFlow笔记之单神经元完成多分类任务进行修改,在tf1.x与tf2.x中使用神经网络完成手写体数字识别多分类任务。一、数据集调用数据集调用与预处理和上一篇完全相同#数据集调用,在tensorflow2.x中调用数据集importt
- TensorFlow2安装(超详细步骤-人工智能实践)
不唐
Python深度学习TensorFlowtensorflow深度学习python
TensorFlow2安装教程1前言1.1版本记录1.2工具简介2详细步骤及安装语句2.1安装Anaconda2.2TensoFlow安装2.3验证是否成功2.4PyCharm下载与安装2.5PyCharm环境配置2.5.1不唐初尝试1前言点滴进步,加油!最近在MOOC看北京大学的曹健老师的《人工智能实践:Tensorflow笔记》课程。其中第一章的第8节提到了详细的TensorFlow安装过程。
- tensorflow笔记(十九)——错误集锦
starxhong
tensorflowtensorflow深度学习错误
错误及应对方案1,问题:训练正常,预测和评估的时候报OOM:办法:减少预测和训练的batchsize,或者减少网络参数。参考:ResourceExhaustedError(seeabovefortraceback):OOMwhenallocatingtensorofshape[7744,512]#33932,问题:从dataset打印数据,报错OP_REQUIRESfailedatexample_
- InceptionNet与ResNet
九思Atopos
tensorflow笔记深度学习pythontensorflow
以下代码图片思路来源:北京大学Tensorflow笔记嗯,最近学了一下神经网络,并没有很难,主要是把代码背下来,然后掌握Tensorflow是怎么搭建网络的,Tensorflow是比pytorch好用的,我直接抄的代码里面,训练还要自己写循环,,而tensonflow直接调用fit函数即可和老师做了一下InceptionNet还有ResNet,ResNet主要是有一条path,由于维度不同需要使用
- TensorFlow笔记之多元线性回归
Mr_Stutter
Python机器学习tensorflow线性回归python
文章目录前言一、数据处理二、TensorFlow1.x1.定义模型2.训练模型3.结果可视化4.模型预测5.TensorBoard可视化三、TensorFlow2.x1.定义模型2.训练模型3.结果可视化4.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成多元线性回归的过程。一、数据处理在此使用波士顿房价数据集,包含506个样本,输入为12个房屋信息特征,输出为房
- TensorFlow笔记之单变量线性回归
Mr_Stutter
Python机器学习tensorflow线性回归
文章目录前言一、数据集生成二、TensorFlow1.x1.定义模型2.训练模型3.模型预测三、TensorFlow2.x1.定义模型2.训练模型3.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成单变量线性回归的过程。一、数据集生成生成带标准正态分布噪声的y=2x+1数据集importnumpyasnpimportmatplotlib.pyplotasplt#数
- Tensorflow笔记之【神经网络的初步搭建】
不理不理不理左卫门
机器学习Tensorflow
一、基本概念基于Tensorflow的神经网络用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重,得到模型。张量——多维数组参数——神经元线上的权重计算图——搭建神经网络的计算过程,只搭建不计算会话——执行计算图中的节点运算例:矩阵乘法importtensorflowastf#引入模块x=tf.constant([[1.0,2.0]])#定义一个2阶1x2张量等于[[1.0,2
- TensorFlow笔记之单神经元完成多分类任务
Mr_Stutter
Python机器学习tensorflow分类
文章目录前言一、逻辑回归1.二分类问题2.多分类问题二、数据集调用三、TensorFlow1.x1.定义模型2.训练模型3.结果可视化四、TensorFlow2.x1.定义模型2.训练模型3.结果可视化总结前言记录分别在TensorFlow1.x与TensorFlow2.x中使用单神经元完成MNIST手写数字识别的过程。一、逻辑回归将回归值映射为各分类的概率1.二分类问题1.sigmod函数:y=
- 1TensorFlow笔记——基础概念简介&Python简明教程
weixin_45165961
pythontensorflow
0.1人工智能让机器看起来跟人一样,目前处于弱人工智能NarrowAI,距离强人工智能GeneralAI还有很大一段路要走。0.1.1机器学习让计算机自动学习,获得规律(模型),用新规律预测。0.1.2分类有监督学习:给带结果的数据进行训练,线性回归、逻辑回归、支持向量机、随机森林等。无监督学习:给数据,找规律进行分类,常见的无监督学习算法有自编码器、生成对抗网络等。半监督学习:给一小部分有标注数
- 人工智能学习第一篇(tensorflow笔记)
& Pumbaa
tensorflow
本文是在学习北大课程“人工智能实践:tensorflow笔记”的基础上,自己做的笔记,用于温故知新。张量(Tensor):多维数组(列表)阶:张量的维数(从0开始)张量可以表示0阶到n阶数组(列表)eg1:importtensorflowastfa=tf.constant([1,5],dtype=tf.int64)print(a)print(a.dtype)print(a.shape)结果:tf.
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 用tensorflow搭建全连接神经网络实现mnist数据集的识别
humuhumunukunukuapua
爱好machinelearningmnisttensorflow
说明:本代码来自于北京大学曹健老师的MOOC人工智能实践:Tensorflow笔记第五讲I前向传播网络搭建在mnist_forward.py中搭建两层全连接网络,这里面就是定义层数,节点数,激活函数这些。输入节点数目就是mnist数据集的图片28*28大小,用784行的向量作为输入。第一层y1=relu(x*w1+b1)其中y1为500行的向量。那么w1里面就有784*500个变量啦~~b1是50
- TensorFlow笔记_05——神经网络八股功能拓展
要什么自行车儿
#TensorFlow2.0tensorflow神经网络深度学习
目录5.神经网络八股功能拓展5.1自制数据集,解决本领域应用5.2数据增强,扩充数据集5.3断点续训,存取模型5.3.1读取保存模型5.4参数提取,把参数存入文本5.5acc/loss可视化,查看训练效果5.6应用程序,给图实物(手写数字识别)上一篇:TensorFlow笔记_04——八股搭建神经网络下一篇:敬请期待5.神经网络八股功能拓展5.1自制数据集,解决本领域应用defgenerateds
- TensorFlow笔记之:填充使用tf.sequence_mask()函数详细说明和应用场景
模糊包
TensorFlow
tf.sequence_mask()函数这个函数目前我主要用于数据填充时候使用。文章目录tf.sequence_mask()函数1.函数介绍2.参数解释要点解释:3.函数举例4.注意事项和应用场景1.函数介绍这个是官方定义,耐心看完解释再看后面的例子,你会一下就懂了。#函数定义sequence_mask(lengths,maxlen=None,dtype=tf.bool,name=None)#返回
- 小白笔记:深度学习之Tensorflow笔记(七:神经网络优化过程)
my小马
tensorflow深度学习神经网络tensorflow深度学习
激活函数激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。引入非线性激活函数,可使深层神经网络的表达能力更加强大。简化模型:MP模型:优秀的激活函数:•非线性:激活函数非线性时,多层神经网络可逼近所有函数•可微性:优化器大多用梯度下降更新参数•单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数•近似恒等性:f(x)≈x当参数初始化为随机小值时,神经网络更稳定激活函数输出值的范围
- 人工智能实践:Tensorflow笔记 Class 2:神经网络优化
By4te
机器学习Pythontensorflow人工智能神经网络
目录2.1基础知识2.2复杂度学习率1.复杂度2.学习率2.3激活函数1.sigmoid函数2.tanh函数3.relu函数4.leaky-relu函数2.4损失函数1.均方误差2.自定义损失函数3.交叉熵损失函数4.softmax与交叉熵结合2.5缓解过拟合正则化2.6优化器1.SGD2.SGDM3.Adagrad4.RMSProp5.Adam2.1基础知识2.2复杂度学习率1.复杂度2.学习率
- 《人工智能实践:Tensorflow笔记》听课笔记24_7.1卷积神经网络
RENeast
人工智能人工智能
附:课程链接第七讲.卷积神经网络7.1卷积神经网络由于个人使用Win7系统,并未完全按照课程所讲,以下记录的也基本是我的结合课程做的Windows系统+PyCharm操作。且本人有python基础,故一些操作可能简略。并未完全按照网课。记住编写代码时,除注释内容外,字符均使用英文格式。一、回顾及展开前两讲中我们利用全连接网络实现了对mnist数据集的训练,我们已学会使用数据集训练模型,并让训练好的
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多