CS231n(Spring 2019)Assignment 1 - Softmax

Preprocessing

def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500):
    """
    Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
    it for the linear classifier. These are the same steps as we used for the
    SVM, but condensed to a single function.  
    """
    # Load the raw CIFAR-10 data
    cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
    
    # Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
    try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
    except:
       pass

    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    
    # subsample the data
    mask = list(range(num_training, num_training + num_validation))
    X_val = X_train[mask]
    y_val = y_train[mask]
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]
    mask = np.random.choice(num_training, num_dev, replace=False)
    X_dev = X_train[mask]
    y_dev = y_train[mask]
    
    # Preprocessing: reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_val = np.reshape(X_val, (X_val.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
    
    # Normalize the data: subtract the mean image
    mean_image = np.mean(X_train, axis = 0)
    X_train -= mean_image
    X_val -= mean_image
    X_test -= mean_image
    X_dev -= mean_image
    
    # add bias dimension and transform into columns
    X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
    X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
    X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
    X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
    
    return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev


# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data()
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('dev data shape: ', X_dev.shape)
print('dev labels shape: ', y_dev.shape)

即将数据集分为 Training data, Validation data 和 Test data,数据规模如下所示:

Train data shape:  (49000, 3073)
Train labels shape:  (49000,)
Validation data shape:  (1000, 3073)
Validation labels shape:  (1000,)
Test data shape:  (1000, 3073)
Test labels shape:  (1000,)
dev data shape:  (500, 3073)
dev labels shape:  (500,)

Softmax模块

(in cs231n/classifiers/softmax.py)

from builtins import range
import numpy as np
from random import shuffle
from past.builtins import xrange

def softmax_loss_naive(W, X, y, reg):
    """
    Softmax loss function, naive implementation (with loops)

    Inputs have dimension D, there are C classes, and we operate on minibatches
    of N examples.

    Inputs:
    - W: A numpy array of shape (D, C) containing weights.
    - X: A numpy array of shape (N, D) containing a minibatch of data.
    - y: A numpy array of shape (N,) containing training labels; y[i] = c means
      that X[i] has label c, where 0 <= c < C.
    - reg: (float) regularization strength

    Returns a tuple of:
    - loss as single float
    - gradient with respect to weights W; an array of same shape as W
    """
    # Initialize the loss and gradient to zero.
    loss = 0.0
    dW = np.zeros_like(W)

    #############################################################################
    # TODO: Compute the softmax loss and its gradient using explicit loops.     #
    # Store the loss in loss and the gradient in dW. If you are not careful     #
    # here, it is easy to run into numeric instability. Don't forget the        #
    # regularization!                                                           #
    #############################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    num_train = X.shape[0] #N
    num_classes = W.shape[1] #C
    for i in range(num_train):
        f_i = X[i].dot(W)
        f_i -= np.max(f_i)
        sum_j = np.sum(np.exp(f_i))
        p = lambda k:np.exp(f_i[k]) / sum_j
        loss += -np.log(p(y[i]))
        for k in range(num_classes):
            p_k = p(k)
            dW[:,k] += (p_k - (k==y[i])) * X[i]
    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)
    dW /= num_train
    dW += reg*W

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    return loss, dW


def softmax_loss_vectorized(W, X, y, reg):
    """
    Softmax loss function, vectorized version.

    Inputs and outputs are the same as softmax_loss_naive.
    """
    # Initialize the loss and gradient to zero.
    loss = 0.0
    dW = np.zeros_like(W)

    #############################################################################
    # TODO: Compute the softmax loss and its gradient using no explicit loops.  #
    # Store the loss in loss and the gradient in dW. If you are not careful     #
    # here, it is easy to run into numeric instability. Don't forget the        #
    # regularization!                                                           #
    #############################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    num_train = X.shape[0] #N
    f = X.dot(W)
    #X(N,D) W(D,C) f(N,C)
    f -= np.max(f,axis = 1,keepdims = True)
    sum_f = np.sum(np.exp(f),axis = 1,keepdims = True)
    p = np.exp(f)/sum_f
    loss = np.sum(-np.log(p[np.arange(num_train),y]))
    ind = np.zeros_like(p)
    ind[np.arange(num_train),y] = 1
    dW = X.T.dot(p - ind)
    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)
    dW /= num_train
    dW += reg*W

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    return loss, dW

其中关于loss和dW的推导见博文:
《多分类器softmax——绝对简单易懂的梯度推导》- 月下花弄影

结果验证

# First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.

from cs231n.classifiers.softmax import softmax_loss_naive
import time

# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As a rough sanity check, our loss should be something close to -log(0.1).
print('loss: %f' % loss)
print('sanity check: %f' % (-np.log(0.1)))
loss: 2.369896
sanity check: 2.302585
# Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)
numerical: 1.160023 analytic: 1.160022, relative error: 3.931098e-08
numerical: 3.555074 analytic: 3.555074, relative error: 1.285894e-08
numerical: -0.345163 analytic: -0.345163, relative error: 1.247007e-07
numerical: 0.430499 analytic: 0.430499, relative error: 1.252352e-07
numerical: -0.476966 analytic: -0.476966, relative error: 6.130511e-08
numerical: 4.303385 analytic: 4.303385, relative error: 1.042744e-08
numerical: 1.248775 analytic: 1.248775, relative error: 7.940834e-08
numerical: -4.852993 analytic: -4.852993, relative error: 7.047699e-09
numerical: 0.661671 analytic: 0.661671, relative error: 7.513673e-08
numerical: 1.635486 analytic: 1.635486, relative error: 1.502169e-08
numerical: -0.625054 analytic: -0.625054, relative error: 1.526714e-08
numerical: 1.361989 analytic: 1.361989, relative error: 3.627339e-09
numerical: 0.280297 analytic: 0.280297, relative error: 2.871195e-07
numerical: -6.703095 analytic: -6.703095, relative error: 5.533269e-09
numerical: -0.310387 analytic: -0.310387, relative error: 1.759413e-07
numerical: -1.079213 analytic: -1.079213, relative error: 6.495149e-09
numerical: -2.684781 analytic: -2.684781, relative error: 5.743039e-09
numerical: 1.747734 analytic: 1.747734, relative error: 1.403972e-09
numerical: -2.146907 analytic: -2.146907, relative error: 2.798771e-09
numerical: -1.233420 analytic: -1.233420, relative error: 1.297245e-09
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))

from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))

# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
print('Gradient difference: %f' % grad_difference)
naive loss: 2.369896e+00 computed in 0.147392s
vectorized loss: 2.369896e+00 computed in 0.003993s
Loss difference: 0.000000
Gradient difference: 0.000000

调参部分

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [1e-7, 5e-7]
regularization_strengths = [2.5e4, 5e4]

################################################################################
# TODO:                                                                        #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save    #
# the best trained softmax classifer in best_softmax.                          #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

for reg in regularization_strengths:
    for lr in learning_rates:
        svm = Softmax()
        loss_hist = svm.train(X_train, y_train, lr, reg, num_iters=1500)
        y_train_pred = svm.predict(X_train)
        train_accuracy = np.mean(y_train == y_train_pred)
        y_val_pred = svm.predict(X_val)
        val_accuracy = np.mean(y_val == y_val_pred)
        if val_accuracy > best_val:
            best_val = val_accuracy
            best_softmax = svm
        results[(lr,reg)] = train_accuracy, val_accuracy

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    
# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy))
    
print('best validation accuracy achieved during cross-validation: %f' % best_val)
lr 1.000000e-07 reg 2.500000e+04 train accuracy: 0.351061 val accuracy: 0.363000
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.322796 val accuracy: 0.339000
lr 5.000000e-07 reg 2.500000e+04 train accuracy: 0.350510 val accuracy: 0.366000
lr 5.000000e-07 reg 5.000000e+04 train accuracy: 0.326204 val accuracy: 0.342000
best validation accuracy achieved during cross-validation: 0.366000
# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
softmax on raw pixels final test set accuracy: 0.363000

结果可视化

# Visualize the learned weights for each class
w = best_softmax.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
    plt.subplot(2, 5, i + 1)
    
    # Rescale the weights to be between 0 and 255
    wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
    plt.imshow(wimg.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])

CS231n(Spring 2019)Assignment 1 - Softmax_第1张图片
Figure:W的可视化结果

你可能感兴趣的:(CS231n)