结构图
import tensorflow as tf
"""
lenet 结构
"""
IMAGE_SIZE = 28
NUM_CHANNELS = 1
CONV1_SIZE = 5
CONV1_KERNEL_NUM = 32
CONV2_SIZE = 5
CONV2_KERNEL_NUM = 64
FC_SIZE = 512 # 全连接层第一层 512个神经元
OUTPUT_NODE = 10
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
if regularizer is not None:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
# x=[batch, 行分辨率, 列分辨率,通道数] == [batch, height, width, channels]
# w=[行分辨率, 列分辨率,通道数, 卷积核个数] kernal
# strides=[1, 行步数, 列步数, 1] 滑动步长
# padding 卷积方式 有 SAME VALID
def my_conv2(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
# 最大值池化 参数类似conv2d()
def max_pooling_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式
def forward(x, train, regularizer):
# 28 * 28 *1 5 * 5 * 32 = 28 * 28 * 32
conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
conv1_b = get_bias([CONV1_KERNEL_NUM])
conv1 = my_conv2(x, conv1_w)
# 一个叫bias的向量加到一个叫value的矩阵上,是向量与矩阵的每一行进行相加,得到的结果和value矩阵大小相同。
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
pool1 = max_pooling_2x2(relu1)
# [batch, 14 14 32] //[batch, height, width, channels]
# 14 * 14 * 32 5 * 5 *64 = 14 * 14 * 64
conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer)
conv2_b = get_bias([CONV2_KERNEL_NUM])
conv2 = my_conv2(pool1, conv2_w)
# 一个叫bias的向量加到一个叫value的矩阵上,是向量与矩阵的每一行进行相加,得到的结果和value矩阵大小相同。
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
pool2 = max_pooling_2x2(relu2)
# [batch, 7 7 64] //[batch, height, width, channels]
# pool2.get_shape()返回一个元组 as_list() 将元组转换为 列表
# 由于池化输出形式为 [batch, height, width, channels]
pool_shape = pool2.get_shape().as_list() # [batch, 7 7 64]
# 全连接层节点个数
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
# 拉直
reshape = tf.reshape(pool2, [pool_shape[0], nodes])
fc1_w = get_weight([nodes, FC_SIZE], regularizer)
fc1_b = get_bias([FC_SIZE])
fc1 = tf.nn.relu(tf.matmul(reshape, fc1_w) + fc1_b)
if train:
fc1 = tf.nn.dropout(fc1, 0.5)
fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
fc2_b = get_bias([OUTPUT_NODE])
y = tf.matmul(fc1, fc2_w) + fc2_b
return y
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import os
import numpy as np
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.005
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = './model/'
MODEL_NAME = 'mnist_model'
"""
lenet 结构
"""
def backward(mnist):
# 因为输入为四阶张量 所以x 也应该为四阶张量 形式为[batch, height, width, channels]
x = tf.placeholder(tf.float32, [
BATCH_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS])
y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
y = mnist_lenet5_forward.forward(x, True, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True
)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs, (
BATCH_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS
))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 100 is 0:
print('After %d training step, loss on training batch is %g ' % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main():
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
backward(mnist)
if __name__ == '__main__':
main()
##测试程序
在测试程序中使用的是训练好的网络,故不使用 dropout,正则化,滑动平均,
而是利用前向传播,让所有神经元都参与运算,从而输出识别准确率。
import tensorflow as tf
import numpy as np
import mnist_lenet5_forward
import mnist_lenet5_backward
import time
from tensorflow.examples.tutorials.mnist import input_data
def test(mnist):
with tf.Graph().as_default() as g: # 设置新的计算图
x = tf.placeholder(tf.float32, [
mnist.test.num_examples,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS
])
y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
y = mnist_lenet5_forward.forward(x, False, None)
ema = tf.train.ExponentialMovingAverage(mnist_lenet5_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver()
correct_prodection = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prodection, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_lenet5_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('.')[-1]
reshape_x = np.reshape(mnist.test.images, (
mnist.test.num_examples,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS
))
accuracy_score = sess.run(accuracy, feed_dict={x:reshape_x, y_:mnist.test.labels})
print('After %s training step(s), test accuracy = %g' % (global_step, accuracy_score))
else:
print('no checkpoint file found ')
return
time.sleep(5)
def main():
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
test(mnist)
if __name__ == '__main__':
main()