- 如何在 Linux 上安装 RTX 5090 / 5080 /5070 Ti / 5070 驱动程序 — 详细指南
知识大胖
NVIDIAGPU和大语言模型开发教程linux运维服务器
简介为了获得最佳性能,您需要在Linux上运行5090/5080/5070Ti/5070或其他50系列GPU(或Windows上的WSL)。这篇文章将包含有关如何操作的详细指南。主线内核和驱动程序怪癖之旅Nvidia50系列GPU拥有最新的Nvidia技术。但是,新硬件需要一些新软件或更新,这需要一些耐心。如果您在这里,您可能会遇到Ubuntu默认设置的障碍。不要害怕!我最近自己摸索了这个迷宫,结
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 什么是热力学计算?它如何帮助人工智能发展?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能量子计算
现代计算的基础是晶体管,这是一种微型电子开关,可以用它构建逻辑门,从而创建CPU或GPU等复杂的数字电路。随着技术的进步,晶体管变得越来越小。根据摩尔定律,集成电路中晶体管的数量大约每两年增加一倍。这种指数级增长使得计算技术呈指数级发展。然而,晶体管尺寸的缩小是有限度的。我们很快就会达到晶体管无法工作的阈值。此外,人工智能的进步使得对计算能力的需求比以往任何时候都更加迫切。根本问题是自然是随机的(
- LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
汀、人工智能
LLM技术汇总人工智能自然语言处理LLMAgentvLLMAI大模型大模型部署
LLM大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战1.环境准备GPU设备:A10,3090,V100,A100均可.#设置pip全局镜像(加速下载)pipconfigsetglobal.index-urlhttps://mirrors.aliyun.com/pypi/simple/#安装ms-swiftpipinstall'ms-swift[llm]'-U#vllm与
- 8卡RTX 5090D服务器部署Qwen3-32B-AWQ模型执行性能测试
一、背景最近得了一台8卡5090D服务器进行测试评估。GPU拓扑情况如下(test)root@ubuntu:/opt/models#nvidia-smitopo-mGPU0GPU1GPU2GPU3GPU4GPU5GPU6GPU7CPUAffinityNUMAAffinityGPUNUMAIDGPU0XNODENODENODESYSSYSSYSSYS0-31,64-950N/AGPU1NODEXNO
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 怎么强制macOS上的某个应用不使用独立显卡
背景之前碰到过企业微信更新之后强制使用独立GPU,后面找到了快捷指令的方式禁止企业微信使用独立GPU启动,后面某个版本更新好了。最近最近微信更新到了4.0.3.93版本,也出现了这个问题,不想再在快捷指令里启动了,因为占用菜单栏空间,所以找了一下,发现苹果官方DeveloperDocumentation给出了修改Info.plist文件禁止应用使用独立GPU的方法,具体参考方法二。一、快捷指令.a
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- 数据不Ready,一切AI Ready都是伪命题
2025年随着DeepSeekR1通用大模型的爆火,企业级AI应用元年正式来临。“AIReady”这个词随之火了起来,但什么是AIReady?是有了大模型接口,就是Ready?是买了GPU服务器,就能跑出结果?显然不是。在袋鼠云看来,AIReady不等于模型Ready,而是数据Ready。没有可用、可控、可理解的数据,AI只能是空中楼阁。AIReady,首先是DataReady。别让AIReady
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- 【零基础学AI】第36讲:GPT模型原理
1989
0基础学AI人工智能gptlstmrnnYOLO目标检测
本节课你将学到理解GPT模型的基本原理掌握Transformer解码器的工作机制实现一个简单的文本生成应用开始之前环境要求Python3.8+安装包:pipinstalltransformerstorch硬件:CPU即可运行(GPU可加速)前置知识了解基本的神经网络概念(第23讲内容)熟悉Python编程基础核心概念什么是GPT?GPT(GenerativePre-trainedTransform
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- 英伟达 Isaac ROS产品体验
芝麻香儿
Roadstodeeplearning.AI英伟达IsaacROS
这里写自定义目录标题英伟达IsaacROS产品体验运行的商品名称运行过程记录GPU加速仿真总结英伟达IsaacROS产品体验NVIDIAIsaacROS是一套为自主移动机器人(AMR)开发的硬件加速软件包,专为在NVIDIAGPU和Jetson平台上优化ROS(RobotOperatingSystem)应用程序而设计。它通过提供一系列模块化的ROS包和完整的处理管道,帮助开发者加速AI感知、图像处
- 双轮驱动:政策激励与外部制约下的国产服务器市场演进
科智咨询
服务器运维gpu算力
2025年6月,科智咨询正式发布《中国国产服务器市场研究报告(2025)》,报告从国产服务器产业概述、政策环境分析、市场现状与竞争格局、面临挑战与市场机遇等维度,深入剖析国产服务器市场现状及未来发展趋势。2022年10月,美国首次将A100和H100等高端GPU列入对华出口管制清单,标志着对中国服务器芯片的针对性限制正式拉开序幕。与此同时,国内相关支持政策持续落地,从“国产替代”专项资金到鼓励核心
- RapidRAW RAW 图像编辑器
罗光记
百度数据库facebooksegmentfault经验分享
RapidRAW是一款现代化的高性能AdobeLightroom替代品。它体积轻巧(不足30MB),适用于Windows、macOS和Linux,提供功能丰富、美观的编辑体验。一款美观、无损且GPU加速的RAW图像编辑器,在构建时充分考虑了性能。主要特点核心编辑引擎GPU加速处理:所有图像调整均使用自定义WGSL着色器在GPU上处理,以获得快速反馈。蒙版:利用AI主体和前景检测功能,即时创建精准蒙
- Chromium 引擎启用 Skia Graphite后性能飙升
罗光记
百度facebook数据库经验分享oneapi
在一项被许多开发者关注的性能优化进展中,Chromium项目正逐步将其图形渲染后台从经典的Ganesh迁移至Skia新一代图形后端Graphite,而最新测试结果显示,这一举措带来了显著的性能提升。Skia是谷歌主导的跨平台2D图形库,长期以来一直是Chromium浏览器的核心组成部分。Ganesh是Skia的传统渲染后端,而Graphite是为现代GPU和图形API(如Vulkan和Metal)
- 在Ubuntu系统下使用Docker部署ollama并使用英伟达gpu加速
longze_7
docker容器运维
下载安装英伟达Nvidiacontainertoolkit:curl-fsSLhttps://nvidia.github.io/libnvidia-container/gpgkey|sudogpg--dearmor-o/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg\&&curl-s-Lhttps://nvidia.github.io
- 多租户场景下的资源配额管理,如何实现公平分配与优先级调度?
百态老人
人工智能数据库大数据
多租户场景下的资源配额管理与调度策略体系(2025技术视角)一、资源配额管理的核心机制资源配额是多租户环境下实现资源隔离与共享的基石,其核心在于建立动态可扩展的约束规则与智能化的执行框架。当前主流技术体系包含以下核心组件:1.分层配额模型物理层配额:基于硬件资源的绝对限制(如CPU核数、内存容量、GPU算力),通过Linuxcgroups或WindowsJobObjects实现资源硬性隔离。例如,
- 异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析
观熵
大模型高阶优化技术专题算法人工智能
异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析关键词异构调度、Kubernetes调度器、GPU任务绑定、MIG分配、推理流量调度、服务亲和性、任务隔离、资源优先级、边缘协同、动态算力管理摘要在AI推理系统的生产级部署中,单一自动扩缩容机制已无法满足实际复杂环境中对资源利用率、任务延迟与系统稳定性的多重要求。特别是在GPU/NPU/CPU并存的异构计算集群中,运行
- 跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析
观熵
大模型高阶优化技术专题架构人工智能
跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析关键词跨集群调度、边缘推理、GPU-NPU协同、KubeFed、资源分域、任务下发、多租户隔离、MLOps联邦调度、推理闭环、负载均衡摘要在AI推理系统进入产业级部署阶段后,模型服务逐步从中心化集群向边缘设备、跨地理分布式节点延伸,形成典型的“中心+边缘”异构多集群形态。为实现高效资源利用与低时延响应,推理系统需要支持节点异
- 冷冻电镜重构的GPU加速破局:从Relion到CryoSPARC的并行重构算法
九章云极AladdinEdu
人工智能pytorch架构gpu算力机器学习自然语言处理深度学习
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。一、冷冻电镜重构的算力困局随着单粒子冷冻电镜(cryo-EM)分辨率突破原子级别(<3Å),重构算法计算复杂度呈指数级增长。传统CPU集群处理百万级粒子数据集需数周时间,成为结构生物学研究的关键瓶颈。本文重点分析Relion和CryoSPARC两大主流软件在GPU并行化方面的技术
- jetson orin nano安装GPU版本的pytorch过程
小鲈鱼-
pytorch人工智能python
一、安装jetpack组件和安装CUDA/cuDNN可以参考下面这个博客「解析」JetsonOrinNX安装CUDA/cuDNN_jetsoncuda-CSDN博客二、安装Pytorch和torchaudio可以直接看官方给的步骤https://pytorch.org/audio/main/build.jetson.html
- TensorBase开发者快速入门指南
宗隆裙
TensorBase开发者快速入门指南tensorbasetensorbase/tensorbase:是一个现代的GPU加速的张量数据库。适合用于大规模数据分析和机器学习。项目地址:https://gitcode.com/gh_mirrors/te/tensorbase前言TensorBase是一个基于Rust构建的高性能时序数据库,专为大规模数据分析场景设计。本文将详细介绍如何搭建TensorB
- 鸿蒙next开发:性能测试工具SmartPerf Editor
代码与思维
鸿蒙harmonyos华为嵌入式硬件鸿蒙驱动开发
SmartPerfEditor是一款PC端桌面应用,通过监测、采集应用运行时FPS、CPU、GPU、Memory、Battery、Network等性能数据,帮助开发者了解应用的性能状况。SmartPerfEditor还集成了DrawingDoc功能,可录制RenderService绘制指令,回放并生成不同图形库文件。通过逐帧逐绘制指令回放,来识别是否存在冗余绘制、是否可以优化绘制指令的数量,从而提
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- NCCL 核心集体通信操作深度解析:从原理到优化实践
清风 001
AI大模型底层建设gpu算力ai
目录引言:NCCL——分布式训练的通信引擎一、NCCL基础:GPU通信的“加速器”1.1NCCL与MPI的协同1.2集体通信的价值二、NCCL核心操作深度解析2.1AllGather:全局数据聚合2.1.1定义与目标2.1.2算法原理2.1.3性能影响因素2.1.4测试方法(nccl-tests)2.2AllReduce:梯度聚合的核心2.2.1定义与目标2.2.2算法原理2.2.3性能影响因素2
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- Windows Subsystem for Linux (WSL):现代开发的终极跨平台方案
止观止
WindowswindowslinuxWSL开发环境
引言WindowsSubsystemforLinux(WSL)是微软革命性的技术突破,它彻底改变了Windows平台的开发体验。通过实现在Windows内核中无缝运行原生Linux二进制文件,WSL弥合了Windows与Linux之间的鸿沟。本文将从架构原理、实操指南到高阶应用进行全面剖析,您将掌握:WSL1与WSL2的架构差异与性能对比文件系统互通与跨平台开发的最佳实践GPU加速支持与容器化集成
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache