题目链接:https://codeforces.com/problemset/problem/1398/C
博客园食用链接: https://www.cnblogs.com/lonely-wind-/p/13509265.html
You are given an array a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,…,an consisting of integers from 0 to 9. A subarray a l , a l + 1 , a l + 2 , … , a r − 1 a_l,a_{l+1},a_{l+2},…,a_{r−1} al,al+1,al+2,…,ar−1,ar is good if the sum of elements of this subarray is equal to the length of this subarray ∑ i = l r a i = r − l + 1 \sum_{i=l}^ra_i=r-l+1 ∑i=lrai=r−l+1.
For example, if a=[1,2,0], then there are 3 good subarrays: a 1 … 1 = [ 1 ] , a 2 … 3 = [ 2 , 0 ] a_{1…1}=[1],a_{2…3}=[2,0] a1…1=[1],a2…3=[2,0] and a 1 … 3 = [ 1 , 2 , 0 ] a_{1…3}=[1,2,0] a1…3=[1,2,0].
Calculate the number of good subarrays of the array a.
Input
The first line contains one integer t (1≤t≤1000) — the number of test cases.
The first line of each test case contains one integer n ( 1 ≤ n ≤ 1 0 5 ) n (1≤n≤10^5) n(1≤n≤105) — the length of the array a.
The second line of each test case contains a string consisting of n decimal digits, where the i-th digit is equal to the value of a i a_i ai.
It is guaranteed that the sum of n over all test cases does not exceed 1 0 5 10^5 105.
Output
For each test case print one integer — the number of good subarrays of the array a.
input
3
3
120
5
11011
6
600005
output
3
6
1
Note
The first test case is considered in the statement.
In the second test case, there are 6 good subarrays: a 1 … 1 , a 2 … 2 , a 1 … 2 , a 4 … 4 , a 5 … 5 a_{1…1}, a_{2…2}, a_{1…2}, a_{4…4}, a_{5…5} a1…1,a2…2,a1…2,a4…4,a5…5 and a 4 … 5 a_{4…5} a4…5.
In the third test case there is only one good subarray: a 2 … 6 a_{2…6} a2…6.
题目大意:给你一个字符串序列,你需要找到有多少个区间使得其区间内每个元素的和为区间长度。
emmm,对于其公式我们很容易看出其区间的平均值为1,我们将其每个数-1,就可变为另一个东西:求区间和值为0的有多少个。那么我们只需要记录其每个前缀和出现的次数就好了,也就是说对于一个前缀和,如果它第二次出现了,那么可以说明中间一定有存在构成一个0的区间。那么我们只需要将其每次出现的次数加上就好了。
以下是AC代码:
#include
using namespace std;
typedef long long ll;
const int mac=1e5+10;
char s[mac];
int a[mac],sum[mac];
int main(int argc, char const *argv[])
{
int t;
scanf ("%d",&t);
while (t--){
int n;
scanf ("%d",&n);
scanf ("%s",s+1);
for (int i=1; i<=n; i++)
a[i]=s[i]-'0'-1,sum[i]=sum[i-1]+a[i];
unordered_map<int,int>mp;
ll ans=0;
mp[0]=1;
for (int i=1; i<=n; i++){
if (mp[sum[i]]) ans+=mp[sum[i]],mp[sum[i]]++;
else mp[sum[i]]++;
}
printf ("%lld\n",ans);
}
return 0;
}