- tensorflow学习笔记(二):机器学习必备API
我愛大泡泡
深度学习机器学习深度学习
前一节介绍了一些最基本的概念和使用方法。因为我个人的最终目的还是在深度学习上,所以一些深度学习和机器学习模块是必须要了解的,这其中包括了tf.train、tf.contrib.learn、还有如训练神经网络必备的tf.nn等API。这里准备把常用的API和使用方法按照使用频次进行一个排列,可以当做一个以后使用参考。这一节介绍的内容可以有选择的看。而且最全的信息都在TensorFlow的API里面了
- TensorFlow学习笔记
SIENTIST
使用“图”(graph)表示计算任务;在被称为“会话”(session)的“上下文”(context)中执行图;使用“张量”(tensor)表示数据,tensor可以任务是一个n维的数组或列表;通过“变量”(varible)维护状态;使用feed和fetch可以为任意的操作赋值或从中获取数据tensorflow.jpggraph中的节点称为op(operation),每个op能把输入的tensor
- tensorflow学习笔记-图像分类模型-AlexNet实现
飞天小小猫
之前一篇文章中总结了CNN中图像分类的经典模型,包括论文解读和分析,但是不写个代码搞一把总觉得虚~啊哈哈这个系列里准备把这些个经典模型用tensorflow实现一下。参考之前引用的blog:深度学习AlexNet模型详细分析上代码吧。参照着模型看更好读一些。'''图像分类模型的tensorflow实现之--AlexNetTensorflowVersion:1.4PythonVersion:3.6R
- Tensorflow学习笔记(六)——卷积神经网络
七月七叶
实现对fashion-minist分类: (1)引包importosos.environ["CUDA_VISIBLE_DEVICES"]="-1"importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportpandasaspdimportsklearnimportsysimpor
- tensorflow vgg基于cifar-10进行训练
GOGOYAO
最近接触tf,想在cifar-10数据集上训练下vgg网络。最开始想先跑vgg16,搜了一大圈,没有一个可以直接跑的(我参考【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg跑出来的精度就10%),要么是代码是针对1000种分类的,要么是预训练好的。最后在Tensorflow学习笔记:CNN篇(6)——CIFAR-10数据集VGG19实现找到了一个vgg19的
- 深度学习与Tensorflow学习笔记2 ——回调函数callbacks和Tensorboard
木头里有虫911
上一期我们从Fashion-mnist数据集开始,使用Tensorflow.keras搭建一个简单的神经网络来处理分类问题。通过这个简单例子我们熟悉了tf.keras的调用。本期我们来学习keras下面的回调函数callbacks的用法。这里,简单的再说一句,Tensorflow有非常完善的官方文档,相当于学习手册。(而且还有中文网站:https://tensorflow.google.cn/)在
- TensorFlow学习笔记--(4)神经网络模型-数据集预处理
Postlude
TensorFlowtensorflow学习笔记
神经网络初步以scikit-leran鸢尾花为例通过scikit-learn库自带的鸢尾花数据集来测试数据的读入fromsklearnimportdatasetsfrompandasimportDataFrameimportpandasaspdx_data=datasets.load_iris().data#.data返回iris数据集所有输入特征y_data=datasets.load_iris
- tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化网络
heart_ace
tensorflow学习笔记tensorflow神经网络可视化python深度学习
tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化运行环境tensorflow-gpu1.11.0python3.6.9importtensorflowastfimportos读取MINIST数据集fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.
- tensorflow学习笔记(十):GAN生成手写体数字(MNIST)
陈小虾
深度学习框架实战GAN手写体生成GAN实战
文章目录一、GAN原理二、项目实战2.1项目背景2.2网络描述2.3项目实战一、GAN原理生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编码器)。生成器从给定噪声中(一般是指均匀分布或者正态分布)产生合成数据,判别器分辨生成器的的输出和真实数据。前者试图产生更接近真实的数据,相应地,后者试图更完美地分辨真实数据
- tensorflow学习笔记3
抬头挺胸才算活着
CreateaTensorFlowobjectthatreturnsx+yifx>y,andx-yotherwise.tf.cond相当于其他编程语言的?,比较要用tf.greatertf.cond(tf.greater(x,y),lambda:tf.add(x,y),lambda:tf.subtract(x,y))tf.case第一个参数是字典或者tuples都可以,只要是一对对,然后每一对第一
- 8月10日TensorFlow学习笔记——TensorFlow 数据类型、创建、索引与切片、维度变换、前向传播
Ashen_0nee
tensorflow学习python
文章目录前言一、Numpy回归问题实战1、Step1:computeloss2、Step2:computeGradientandupdate二、手写数字识别1、Step1:XandY2、Step2:networkstructure3、Step3:循环计算Loss、梯度并更新参数三、数据类型1、tf.constant()2、TensorProperty(1)、.device(2)、.numpy()(
- TensorFlow学习笔记--(3)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
损失函数及求偏导通过tf.GradientTape函数来指定损失函数的变量以及表达式最后通过gradient(%损失函数%,%偏导对象%)来获取求偏导的结果独热编码给出一组特征值来对图像进行分类可以用独热编码0的概率是第0种1的概率是第1种0的概率是第二种tf.one_hot(%某标签值%,%分类数%)这里还没太看懂结果的3X3矩阵是怎么来的如果单纯的是因为有几种类型就有几个1那传入的标签值参数就
- tensorflow学习笔记--张量和基本运算
Yohance0_0
tensorflow框架学习深度学习
张量张量的阶和数据类型(1)张量的属性:graph:张量所属的默认图op:张量的操作名name:张量的字符串描述shape:张量形状一维{5}二维{2,3}三维{2,3,4}importtensorflowastfimportosos.environ['TF_CPP_MIN_LOG_LEVEL']='2'a=tf.constant(5.0)graph=tf.get_default_graph()p
- tensorflow学习笔记----2.常用函数1
qq_35821503
tensorflow深度学习
1.强制tensor转换为该数据类型tf.cast(张量名,dtype=数据类型)x1=tf.constant([1,2,3],dtype=tf.float64)print(x1)x2=tf.cast(x1,dtype=tf.int32)print("x2=",x2)运行结果:2.计算张量维度上元素的最小值tf.reduce_min(张量名)print("min=",tf.reduce_min(x
- TensorFlow学习笔记----3.常用函数2
qq_35821503
tensorflow深度学习
一.Gradienttape我们可以在with结构中,使用Gradienttape实现某个函数对指定参数的求导运算配合上一个文件讲的variable函数可以实现损失函数loss对参数w的求导计算with结构记录计算过程,gradient求出张量的梯度withtf.GradientTape()astape:若干个计算过程grad=tape.gradient(函数,对谁求导)withtf.Gradie
- TensorFlow学习笔记--MLP多层感知机识别手写数字1-9
北航_Curry
TensorFlow2.0tensorflow神经网络深度学习1024程序员节
#简单粗暴tensorflow2.0合集视频p7-p9多层感知机(MLP)利用多层感知机MLP实现手写数字0-9的mnist数据集的识别importtensorflowastfimportnumpyasnp#数据的获取和预处理classMNISTLoader():def__init__(self):mnist=tf.keras.datasets.mnist(self.train_data,self
- Tensorflow学习笔记--张量与会话
IT修炼家
tensorflow
张量张量是Tensorflow的核心组件之一,可以理解为Tensorflow就是张量和流组成的,张量可以简单地理解为多维数组,我的理解就是张量是一个数据模板,深度学习所有数据首先转换为张量的格式再进行计算,然后得到学习结果。横向看张量是整形、浮点型的数,另外注意张量计算中,有些计算需要张量数据的类型相同,否则会报错。纵向看张量是不同维度的“数组”,零阶张量是一个数,是计算的最小单元;二阶张量是向量
- tensorflow学习笔记--Variable变量
爱吃小白兔的大萝卜
tensorflow学习python
tf.Variable()变量:创建、初始化、保存、加载。1.创建Variable()构造函数需要变量的初始值,即任何形状和类型的张量Tensor。初始值定义其形状和类型,一旦构建,变量的类型和形状即确定。如果想要稍后改变变量的形状,需要带上validate_shape=False的赋值操作。#创建一个变量w=tf.Variable(tensor,name=)#运算y=tf.matmul(w,其他
- tensorflow学习笔记:张量介绍以及张量操作函数
heart_ace
tensorflow学习笔记深度学习tensorflow张量
张量(tensor)tensorflow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor。tensor堪为一个n维的数组或列表,每个tensor中包含类型(type)、阶(rank)和形状(shape)。tensor类型tensor类型python类型描述DF_FLOATtf.float3232位浮点数DF_DOUBLEtf.float6461为浮点数DF_
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- TensorFlow学习笔记--(2)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
张量的取值函数求张量的平均值:tf.reduce.mean(%张量名%)求张量的最小值:tf.reduce_min(%张量名%)求张量的最大值:tf.reduce_max(%张量名%)求张量的和:tf.reduce_sum(%张量名%)其次,对于上述所有操作都可在函数后添加一个新的参数axis=%维度%axis=0代表第一维度axis=1代表第二维度以此类推张量的四则运算加减乘除次方/开方特别注意
- Tensorflow学习笔记:1-tensorflow-gpu部署 & keras简单使用-2023-2-12
Merlin雷
python机器学习笔记tensorflowkeras
tensorflow-gpu学习笔记:部署&keras简单使用-2023-2-12tensorflow2.6.0GPU版本部署及测试0-查看NVIDIA驱动版本1-安装2-测试3-简单使用4-tf.keras概述1、(单层)线性回归1、导包&数据读取和观察2、预测目标与损失函数3、创建模型4、训练5、预测2、多层感知器3、逻辑回归1、sigmoid函数2、交叉熵损失函数3、模型预测4、画图看损失和
- TensorFlow学习笔记--(1)张量的随机生成
Postlude
TensorFlowtensorflow学习笔记
张量的生成如何判断一个张量的维数:看张量的中括号有几层012:零维数列[246]:一维向量[[123][456]]:二维数组两行三列第一行数据为123第二行数据为456以此类推n维张量有n层中括号tf.zeros(%指定一个张量的维数%)生成一个全0的张量tf.ones(%指定一个张量的维数%)生成一个全1的张量tf.fill(%指定一个张量的维数%,%Value%)生成一个全为Value的张量随
- Tensorflow学习笔记:Keras函数式API
凿井而饮
tensorflow2pythontensorflow深度学习
目录一、简介二、使用相同的层计算图定义多个模型三、模型可像层一样被调用四、处理复杂计算图拓扑1.多输入多输出模型2.建立一个小的ResNet五、共享层六、提取和重用层计算图节点七、使用自定义层扩展API八、何时使用函数式API1.函数式API的优势2.函数式API的劣势九、混合搭配的API式样1.将函数式模型用作子类化模型的一部分:2.在函数式API中使用任何子类化层或模型一、简介函数式API创建
- tensorflow学习笔记--机器学习基础知识--(1)基本图像分类
爱玩的阿是
学习笔记pythontensorflow机器学习深度学习
学习教材是tensorflow官网上的新手教程为了让自己有更深的印象和理解,将自己的学习笔记记录基础分类:对于衣服的图片分类本指南训练了一个神经网络模型来对衣服的图像进行分类,例如运动鞋和衬衫。本指南使用tf.keras在TensorFlow中构建和训练模型。from__future__importabsolute_import,division,print_function,unicode_li
- TensorFlow学习笔记(未完待续)
苏钟白
tensorflow学习笔记
文章目录tf.Graph().as_default()sessiontensorflow.placeholder()tf.summarytf.Graph().as_default()withtf.Graph().as_default():withtf.device('/gpu:'+str(GPU_INDEX)):TensorFlow中所有计算都会被转化为计算图上的节点。是一个通过计算图的形式来表述
- TensorFlow学习笔记(四)—— 入门 —— 基本使用
tiankong19999
TensorFlowTensorFlow入门
教程地址:TensorFlow中文社区基本使用使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示计算任务.在被称之为会话(Session)的上下文(context)中执行图.使用tensor表示数据.通过变量(Variable)维护状态.使用feed和fetch可以为任意的操作(arbitraryoperation)赋值或者从其中获取数据.综述TensorFlow
- TensorFlow学习笔记(四)——tf.data API
七月七叶
tf.data.Datasetcsv文件读取为dataset并用于训练tfrecord1.tf.data.Datasettf.data.Dataset使用流程:(1)以源数据创建一个dataset;(2)对数据进行预处理;(3)遍历整个dataset,进行数据处理1.1SourceDatasets(1)由数组、列表等创建,将其转化为tensor#创建一个datasetdataset=tf.data
- tensorflow学习笔记————分类MNIST数据集
san.hang
人工智能python
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题。一般是通过使用tensorflow内置的函数进行下载和加载,fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets("MNIST_data",one_hot=True)但是我使用时遇到了“
- tensorflow学习笔记:运算函数、复数操作函数、规约计算、 序列比较与索引提取以及错误类
heart_ace
tensorflow学习笔记运算函数tensorflow错误类规约计算函数索引提前
运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类前一章提到了许多关于张量的操作函数,这里接着将一些运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类记录下来。算数运算函数函数描述tf.asign(x,y,name=None)令x=ytf.add(x,y,name=None)求和tf.subtract(x,y,name=None)减法tf.multiply(x,y,name
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&