- 东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法
天空的蓝耀
python
常微分方程初值问题数值解6.1题目编制RK4方法的通用程序;编制AB4方法的通用程序(由RK4提供初值);编制AB4-AM4预测校正方法通用程序(由RK4提供初值);编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);对于初值问题{y′=−x2y2,0≤x≤1.5,y(0)=3\begin{cases}y'=-x^{2}y^{2},&0\leqx\leq1.5,\\y(0)=3&\
- 东南大学研究生-数值分析上机题(2023)Python 1 绪论
天空的蓝耀
python
舍入误差与有效数1.1题目设SN=∑j=2N1j2−1S_N=\sum\limits_{j=2}^{N}\displaystyle\frac{1}{j^2-1}SN=j=2∑Nj2−11其精确值为12(23−1N−1N+1)\displaystyle\frac{1}{2}\left(\frac{2}{3}-\frac{1}{N}-\frac{1}{N+1}\right)21(32−N1−N+11)
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- python数值分析
寂静丿夏夜
python数据分析numpy
python数值分析上学期上数值分析课的时候被老师要求用python写代码,最后代码加上实验报告,写了一天终于给整完了。为了让大家不在这么煎熬秃顶,我就把我之前写的代码整理一下分享给大家。python二分法解决方程:x^3±2*x-5、、、defsolve_function(x):returnx**3-2*x-5defdichotomy(left,right,eps):mid=(left+righ
- 二次和三次样条曲线的作用,生成二次和三次样条曲线的方法
kfjh
算法
为什么二次样条曲线在插值和逼近中有重要作用二次样条曲线在插值和逼近中有重要作用,主要原因如下:二次样条插值具有一些重要的性质和应用价值。例如,它能够保证拟合曲线不仅通过所有给定的数据点,而且在每段曲线连接处一阶导数相等,从而使得拟合曲线相对平滑。每段曲线是二次曲线。为什么三次样条曲线在插值和逼近中有重要作用三次样条曲线在插值和逼近中有重要作用,主要原因如下:首先,三次样条插值是一种常用的数值分析方
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 北航数值分析作业三
weixin_34214500
c/c++ui数据结构与算法
frommathimport*t_table=[0,0.2,0.4,0.6,0.8,1.0]th=0.2u_table=[0,0.4,0.8,1.2,1.6,2]uh=0.4z_table=[[-0.5,-0.34,0.14,0.94,2.06,3.5],[-0.42,-0.5,-0.26,0.3,1.18,2.38],[-0.18,-0.5,-0.5,-0.18,0.46,1.42],[0.22
- 数值分析大作业c语言版,数值分析大作业3
黄之昊
数值分析大作业c语言版
该楼层疑似违规已被系统折叠隐藏此楼查看此楼数值分析大作业3一、设计方案1.使用牛顿迭代法,对原题中给出的,,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2.对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3.从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时
- 今日小结
夜景_Y
明天有门数值分析考试,这几天一直在刷题库,刷的遍数不算多,题型也大致看了一遍。仍是有许多不会。内心很慌,但是因为今天写的很多,晚上应该歇歇脑子了。刚有室友给我分享的一套题,还没来得及看。大致看了一眼,有我没见过的题,希望明天考试顺利。图片发自App
- LeetCode刷题记——69. x 的平方根(牛顿迭代法)
JimmyGreen
题目描述:实现intsqrt(intx)函数。计算并返回x的平方根,其中x是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例1:输入:4输出:2示例2:输入:8输出:2说明:8的平方根是2.82842...,由于返回类型是整数,小数部分将被舍去。一想到平方根,我第一时间想到用2分法的方法去计算,用一个while循环来控制终止条件。但是突然想到在数值分析中学到的牛顿迭代法,
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 有限元编程经典教材推荐
suoge223
有限元编程从入门到精通matlabpythonc++c语言githubvisualstudiocode制造
有限元方法是工程学和科学计算领域中广泛应用的数值分析技术。有关有限元编程的教材通常覆盖了理论、数值方法和实际编程技能。以下是10本关于有限元编程的教材,每本书都具有其独特的优势,并为读者提供了深入理解和实践有限元方法的机会。需要的小伙伴可以私信我~1.《AFirstCourseintheFiniteElementMethod》byDarylL.Logan-理由:这本书是有限元方法领域的经典之作,适
- Python---Pycharm安装各种库(第三方库)
程序员老冉
pythonpycharm开发语言青少年编程汇编程序人生
一、前言Pycharm中,通常需要安装很多第三方库,才可以使用相应的拓展功能,这篇文档给你介绍Pycharm中的常用库,以及安装的两种方法!二、Pycharm常用库的介绍Pycharm是一款非常流行的Python集成开发环境(IDE),支持多种Python库和框架。以下是一些常用的Python库:NumPy:用于科学计算和数值分析的Python库。Pandas:用于数据分析和数据预处理的Pytho
- [NA]Lab2:求多项式函数的零点
ZJU_TEDA
数值分析数值分析
任务概述数值分析课程的第二个实验,计算一个多项式函数在给定区间[a,b]上的零点。多项式函数形如:p(x)=cnxn+cn−1xn−1+...c1x+c0裁判数据保证在给定区间内存在唯一的实数根。函数接口定义doublePolynomial_Root(intn,doublec[],doublea,doubleb,doubleEPS);其中n表示多项式的阶数,c为传入多项式的系数,a和b分别为区间的
- [计算机数值分析]牛顿法求解方程的根
Spring-_-Bear
武理四年c++数值分析牛顿迭代法迭代求方程根
Spring-_-Bear的CSDN博客导航对于方程f(x)=0f(x)=0f(x)=0设已知它的近似根xkx_{k}xk,则函数f(x)f(x)f(x)在点xkx_{k}xk附近可用一阶泰勒多项式p(x)=f(xk)+f′(xk)(x−xk)p(x)=f(x_{k})+f'(x_{k})(x-x_{k})p(x)=f(xk)+f′(xk)(x−xk)来近似,因此方程f(x)=0f(x)=0f(x
- 我们究竟读了一个什么样的大学?
田洲
在大学里,我们表面上在学习,但是根本不知道学了些什么,学了怎么用,为什么而学。我感觉现在三四流大学的教育跟现实是脱节的,很落后,学校的培养方案变了又变,可能他也不知道自己想要培养什么样的学生。像我们这样的大学,不注重学生找什么样的工作,反而格外注意研究生升学率,是不是有点本末倒置了呢?把所有的东西都寄希望于未来,那我现在在干嘛,要你这个本科是干嘛?研究生有一门公共课叫数值分析,而我们大二就学过了,
- 我的最大收获与成长
civilpy
python
经历Iamnotadesignernoracoder.I'mjustaguywithapoint-of-viewandacomputer.翻译:俺不是码畜,俺只是一条对着电脑有点想法的土木狗。笔者1982年出生,西南交通大学渣硕,目前仍在土木行业(PS:年纪大,跳不动)。2001-2005年,本科阶段学的C艹,60几分飘过。2005-2008年,研究生阶段用Ansys、Flac3D做数值分析。20
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 无法从字符串单元格获取数值:Cannot get a NUMERIC value from a STRING cell
兰觅
说明:从excel中上传数据,报如下错CannotgetaNUMERICvaluefromaSTRINGcell:无法从字符串单元格获取数值分析如下:excel单元格类型为string类型的,获取值时写的数值类型如图所示解决方式如下:1.先获取单元格string类型的数据2.然后转换为double类型图示
- Numpy使用简介
ZShiJ
数据挖掘Pythonnumpy
Numpy相关题目【Python】——Numpy初体验【Python】——NumPy基础及取值操作Numpy是基于Python的通用数值计算工具包,其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包,比如Scipy,和数值分析工具包,比如Pandas、Scikit-learn,都依赖Numpy。利用Numpy,能够高效地对一维数组、矩阵或更高维度的多维数组进行运算,性能比使用Python列
- MATLAB介绍
人间造梦工厂
MATLABMATLAB
MATLAB是MATrixLABoratory即矩阵实验室的缩写,是由美国MathWorks公司开发的专业工程与科学计算软件,是一个集科学计算、数值分析、矩阵计算、数据可视化及交互式程序设计于一体的计算环境,形成一个易于使用的视窗环境。MATLAB执行由MATLAB语言编写的程序,同时提供丰富的预定义函数库,可以简化编程过程,提高编程效率。MATLAB有很多自带的功能强大的工具,如:各类工具箱编辑
- 【数值分析】最小二乘,最佳一致逼近
你哥同学
数值分析matlab最小二乘最佳一致逼近
最小二乘用于不知道f(x){f(x)}f(x)的时候,[a,b]{[a,b]}[a,b]只有一堆点。x1∣x2∣x3∣⋯∣xn∣−−−−−−−−−−f(x1)∣f(x2)∣f(x3)∣⋯∣f(xn)∣\begin{array}{cccccc}x_1&|&x_2&|&x_3&|&\cdots&|&x_n&|\\-&-&-&-&-&-&-&-&-&-\\f(x_1)&|&f(x_2)&|&f(x_3)
- 【数值分析】数值微分
你哥同学
数值分析matlab数值微分
1.基于Taylor公式的数值微分公式f′(x)≈f(x+h)−f(x)h , 截断误差 −f′′(ξ)2hf'(x)\approx\frac{f(x+h)-f(x)}{h}\,\,,\,\,截断误差\,\,\,-\frac{f''(\xi)}{2}hf′(x)≈hf(x+h)−f(x),截断误差−2f′′(ξ)hf′(x)≈f(x)−f(x−h)h , 截断误差 −f′′(ξ)2
- 【数值分析】区间折半法,matlab实现
你哥同学
数值分析matlab区间折半法数值分析
区间折半法从梯形公式出发,上一步步长为h{h}h,则有步长折半后的积分T2n=12Tn+h2∑i=0n−1f(xi+0.5)T_{2n}=\frac{1}{2}T_n+\frac{h}{2}\sum_{i=0}^{n-1}f(x_{i+0.5})T2n=21Tn+2hi=0∑n−1f(xi+0.5)matlab实现%%区间折半法例子formatlong[Ii]=halfStep(@f,0,1,1e
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo