- 动态规划之背包问题全解
学会了,不,学废了
动态规划
概述———动态规划提出人:理查德·贝尔曼本质:一张表格处理方法内容:把原问题分解为若干子问题,自底向上先求解最小子问题,把结果储存在表格中,求解大的子问题时直接从表格中查询小的子问题的解,以避免重复计算,从而提高效率。一、动态规划求解原理适用范围:问题需要具备3个性质———最优子结构、子问题重叠、无后效性。最优子结构指问题最优解包含其子问题的最优解,是使用动态规划的基本条件。三要素:状态、阶段、决
- 《数组》学习——有序数组的平方
小翔很开心
我在CSDN学算法学习
有序数组的平方题目:给你一个按非递减顺序排序的整数数组nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。测试用例:输入:nums=[-4,-1,0,3,10]输出:[0,1,9,16,100]解释:平方后,数组变为[16,1,0,9,100],排序后,数组变为[0,1,9,16,100]该题,有两种解法:暴力排序解法双指针法(快慢指针法)测试程序:(双指针法的求解)#include
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 动态规划算法套路解析
xl.liu
算法动态规划
动态规划概述动态规划是一种用于解决最优化问题的算法技术,它通过将复杂的问题分解为更简单的子问题,并利用这些子问题的解来构建原始问题的解。动态规划特别适用于那些拥有最优子结构和重叠子问题特性的问题。所谓最优子结构是指一个问题的最优解可以通过其子问题的最优解组合而成;而重叠子问题则意味着在求解过程中会多次遇到相同的子问题。解题套路框架面对一个动态规划问题时,通常可以遵循以下四个步骤来进行思考与解答:定
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 揭密 scaling laws
deardao
机器学习
ScalinglawsOpenAI在其早期的关于scalinglaws的论文[1]中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如DeepMind的ChinChilla[2]还提出了不同的结论。论文题目:UnravelingtheMysteryofScalingLaws:PartI论文地址:https://arxiv.org/abs/240
- 6种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、新雀优化算法NOA、鳑鲏鱼优化算法BFO、蜘蛛蜂优化算法SWO)求解机器人路径规划(提供MATLAB代码)
IT猿手
机器人路径规划优化算法无人机路径规划算法机器人matlab宽度优先开发语言人工智能前端
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 求解插值多项式及其余项表达式
F_D_Z
数理数值分析插值多项式
例求满足P(xj)=f(xj)P(x_j)=f(x_j)P(xj)=f(xj)(j=0,1,2j=0,1,2j=0,1,2)及P′(x1)=f′(x1)P'(x_1)=f'(x_1)P′(x1)=f′(x1)的插值多项式及其余项表达式。解:由给定条件,可确定次数不超过3的插值多项式。此多项式通过点(x0,f(x0)),(x1,f(x1))(x_0,f(x_0)),(x_1,f(x_1))(x0,f
- Matlab 机器人 雅可比矩阵
CodingAlgo
算法
===工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(四)——雅可比矩阵_staubli机器人正逆向运动学实例验证matlab-CSDN博客===matlab求雅可比矩阵_六轴机械臂矢量积法求解雅可比矩阵-CSDN博客===(63封私信/80条消息)MATLAB机器人工具箱中机器人逆解是如何求出来的?-知乎===https://zhuanlan.zhihu.com/p/638
- Gurobi:不可能infeasible的纯整数规划模型出现infeasible
喵呜嘻嘻嘻
gurobipython学习
我建了一个不可能infeasible的纯整数规划模型(所有变量都是整数变量),但是竟然出现了infeasible,大惊!赶紧开始看是哪里的问题。由于我求解的是一个多阶段的问题,需要以上一个阶段的解作为下一个阶段的输入,所以我首先打印了上一个阶段的解。作为一个纯整数规划问题,解竟然出现了小数?!对此,Gurobi官方的解答是这样的:为了找出infeasible的原因,我从《Gurobi不可行问题的冲
- GUROBI之如何快速定位模型infeasible的原因
吃面包的快乐小狗
python数学建模
今天在用GUROBI写EVRPTW问题的模型时,遇到了很多问题参考:github上的一个用cplex来求解的paper:TheElectricVehicle-RoutingProblemwithTimeWindowsandRechargingStations(informs.org)code:E-VRPTW/E-VRPTW.modatmain·jmanzolli/E-VRPTW(github.co
- 利用模型输出,解决Yalmip建模+Cplex求解的约束出错问题
eeeecj_23
优化求解matlabmatlab
在进行优化求解过程中,难免会遇到这种情况:Row‘c373’infeasible,allentriesatimpliedbounds.那么应该怎么办呢?当用Yalmip建模+Cplex求解过程中,由于Yalmip的建模方式与Cplex有一定的不同,如图:saveampl(constraint,object,'mymodel');得到结果为:从图中可知,由于没有准确的行编号,利用其对Cplex求解过
- C++调用CPLEX踩过的小坑~
blackms1023
c++
最近在使用VisualStudio2015调用CPLEX进行一些基础问题的求解,初学小白,完全没经验,遇到N多问题,踩了好多坑,在此分享一下!希望可以给后其他研究者提供一neinei学习的经验!1.关于CPLEX中默认变量的问题CPLEX中默认变量为非负值,故在实际编码过程中如若不为变量指定下界为负无穷,且变量存在负值情况,则会出现计算数据错误的情况。具体解决方法就是在初始化的过程中,为其指定一个
- AcWing中01背包问题
ONEPEICE-ing
算法AcWing
在acwing.com中的题,本次为01背包问题【具体视频可通过www.acwing.com/video/214网站观看(ps:是跟着视频中的老师一起写的,并不是原创~~~)】01背包问题题目:有N件物品和一个容量是V的背包。每件物品只能使用一次。第i间物品的体积是vi,价值是wi,求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大,输出最大价值。输入格式:第一行两个整数,N
- 图论---最小生成树
漫漫信奥之路
图论图论算法数据结构
树是一种特殊的图,具有很多特殊的性质。生成树问题研究的是将图中的所有顶点保留,但只选择图中的部分边,得到一棵树(也就是图的生成树)的问题。最小生成树则是在这些生成树中,边权之和最小的生成树。可以使用prime算法或者kruskal算法求解最小生成树。生成树相关概念1、生成树定义在一个V个点的无向连通图中,取其中V-1条边,并连接所有的顶点,所得到的子图称为原图的一棵生成树2、树的属性树是图的一种特
- 【二分搜索 C/C++】洛谷P1024 一元三次方程求解
仟濹
算法学习笔记c语言c++算法
2025-02-13-第52篇作者(Author):郑龙浩/仟濹(CSND)【二分搜索】P1024一元三次方程求解题目描述有形如:ax3+bx2+cx+d=0ax^3+bx^2+cx+d=0ax3+bx2+cx+d=0这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,da,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在−100-100−100至1001001
- 双目立体视觉(3.1)立体标定
2501_90596733
双目立体视觉计算机视觉python人工智能
在双目测距系统中,立体标定是至关重要的一步。其主要目的是求解双目相机的所有内外参数,这些参数的准确性直接关系到后续的效果,进而影响双目测距的精度。一、立体标定的重要性立体标定的核心目标是获取相机的内外参数。内参数包括焦距、主点坐标和畸变参数等,这些参数在相机制造完成后基本固定,无需频繁标定。外参数则包括旋转矩阵R和平移向量T,用于描述相机与场景之间的相对位置关系。通过标定,我们可以消除相机的畸变,
- python:求解爱因斯坦场方程
belldeep
pythonpython爱因斯坦
在物理学中,爱因斯坦的广义相对论(GeneralRelativity)是描述引力如何作用于时空的理论。广义相对论由爱因斯坦在1915年提出,并被阿尔伯特·爱因斯坦、纳森·罗森和纳尔逊·曼德尔斯塔姆共同发展。广义相对论的核心方程是爱因斯坦场方程,它描述了时空的几何结构如何由物质的分布决定。如果你想用Python来探索或模拟广义相对论中的某些现象,你可以从以下几个方面入手:1.使用现有的库Python
- 代码随想录算法训练营第六天 | 242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1. 两数之和
虾饺爱下棋
算法leetcodejava哈希表
代码随想录算法训练营第六天|242.有效的字母异位词、349.两个数组的交集、202.快乐数、1.两数之和第五天休息,就没写文章,hh感悟:今天的任务相对轻松一些。242.有效的字母异位词link题目:给定两个字符串s和t,编写一个函数来判断t是否是s的字母异位词。注意:若s和t中每个字符出现的次数都相同,则称s和t互为字母异位词。先是展现暴力求解:比较好理解,大致思路就是先对两个字符串进行排序,
- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- 【kafka系列】broker
漫步者TZ
kafka数据库分布式kafka
目录Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程Broker处理消费者消息的核心流程关键点总结Broker接收生产者消息和返回消息给消费者的流程逻辑分析Broker处理生产者消息的核心流程接收请求Broker的SocketServer接收来自生产者的ProduceRequest(基于Reactor网络模型)。请求解析与验证解析请求头(Topic、P
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- matlab调用cst计算扫频,CST MWS I算法求解单站RCS是否可以进行扫频设置
林为珮
matlab调用cst计算扫频
如题,利用I算法的FastRCSSweep求解单站RCS是否可以添加扫频设置?如果有如何添加?因为需要,必须计算一个介质目标的单站RCS,所以A算法用不了了。而I算法里面的快速RCS里又没找到扫频的设置,我知道有双站远场监视器的宏,但是单站RCS就不知道怎么办了,请各位大大帮忙解答网友回复:看看在这里设置一下fromto能不能解决扫频问题。网友回复:提供一个新思路,如果是介质的话可以用涂覆操作,这
- PCL 最小包围球(三维)
大鱼BIGFISH
点云进阶C++PCL最小包围球(三维)
文章目录一、简介二、实现代码三、实现效果参考资料一、简介与最小包围圆的思路相同,最小二维球的求解过程如下所示:1.初始化:将点集中的所有点加入待处理列表。2.查找最远点:在当前最小包围球的基础上,查找点集中距离圆心最远的点。3.调整最小包围球:如果找到最远点,则调整最小包围球,使其包含该点。4.迭代:重复步骤2和3,直到最小包围球能够包含所有点。二、实现代码相关代码可以参考:PCL最小包围圆(二维
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 代码随想录 Day 32 |【第八章 贪心算法 part 01】理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和
Accept17
贪心算法算法
一、理论基础代码随想录1.什么是贪心贪心的本质是选择每一阶段的局部最优,从而达到全局最优。2.贪心的解题步骤将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解二、455.分发饼干代码随想录1.解题思路尽量用最大的饼干去满足胃口大的孩子。2.代码实现(1)因为是用大饼干满足胃口大的孩子,所以对饼干、孩子胃口数组排序。定义一个result变量,用于记录喂饱了
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- 【leetcode】数组刷题总结(二)滑动窗口
zs1996_
leetcode刷题总结leetcode算法职场和发展
滑动窗口算法技巧主要用来解决子数组问题,比如让你寻找符合某个条件的最长/最短子数组或者子串。对于某些题目,并不需要穷举所有子串,就能找到题目想要的答案。滑动窗口就是这种场景下的一套算法模板,帮你对穷举过程进行剪枝优化,将求解子串复杂度由O(N^2)->O(N)滑动窗口-定长滑动窗口定长滑窗三步曲:入-更新-出入(扩大窗口):下标为i的元素进入窗口,更新相关统计量更新:更新答案,一般是更新最大值/最
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f