【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)

(一)准备自己的图片数据库

     

1)我的训练图片图片和测试图片的来源:

      

       我的图片来源于徐其华的博客,(http://www.cnblogs.com/denny402/p/5083300.html).这是一个小型的图片数据库,这个图片数据库有500张图片;训练样本400张,测试样本100张;分为5类:bus,dinosaur,elephant,rose,horse(大巴,恐龙,大象,鲜花,马)。

     图片的size==(384*256);图片格式为JPG格式.由于我在此块使用的是CIFAR-10模型,而在CIFAR10模型中,训练样本和测试样本的图片size==(32*32)(pixel),因此在我们开始训练自己的模型之前,我们首先需要对所有的图片进行预处理.其中最重要的预处理操作就是:图片尺寸的归一化.

    在此块,我基于OpenCv写了一个预处理Demo程序,具体的程序如下所示:

/*******************************************************************************************************************
*文件功能:
*     1--针对CIFRA-10模型,进行的图片处理程序,将图片处理成32*32的大小
*     2--用于更改图片的图片名,后缀图片格式,图片的大小
*      win10+vs2013+OpenCv2.4.8
*时间地点:
*      陕西师范大学 2016.10.28
********************************************************************************************************************/

#include
#include

#include
#include
#include

#include
#include

using namespace std;
using namespace cv;


int main()
{
	char strFilename[100];                           //【1】定义一个字符数组保存----图片的存储路径
	char strWindowname[100];                         //【2】定义一个字符数组保存----用于动态更新窗口的窗口名
	char strFilenameAft[100];                        //【3】定义一个字符数组保存----用于给处理之后的图片动态的命名
	int  j = 1;
	for (int i = 720; i <=799; i++)
	{                                                //【4】将图片的路径名动态的写入到strFilename这个地址的内存空间
		sprintf_s(strFilename,    "D:\\mydata\\train\\%d.jpg", i);        
		sprintf_s(strFilenameAft, "D:\\mydata\\aft_train\\horse%d.jpeg", j);
		sprintf_s(strWindowname,  "srcImg%d", j);

		//===========================================================================================
		//【模块1】将图片读入内存,并显示
		//===========================================================================================
		IplImage* pImg = cvLoadImage(strFilename);        //【1】从指定的路径,将图片加载到内存中
		cvNamedWindow(strWindowname, CV_WINDOW_AUTOSIZE); //【2】创建一个显示图片的窗口
		cvMoveWindow(strWindowname, 200, 200);            //【3】将显示窗口固定在(200,200)这个位置显示都进来的图片
		cvShowImage(strWindowname, pImg);                 //【4】显示图片
		//===========================================================================================
		//【模块2】高斯金字塔下采样
		//         1----将图片size调节到32*32左右,并显示
		//         2----384*256:经过连续三次下采样,变为48*32
		//============================================================================================
		IplImage* pPyrDownImg  = cvCreateImage(cvSize(pImg->width / 2, pImg->height / 2), pImg->depth, pImg->nChannels);
		IplImage* pPyrDownImg1 = cvCreateImage(cvSize(pPyrDownImg->width / 2, pPyrDownImg->height / 2), pPyrDownImg->depth, pPyrDownImg->nChannels);
		IplImage* pPyrDownImg2 = cvCreateImage(cvSize(pPyrDownImg1->width / 2, pPyrDownImg1->height / 2), pPyrDownImg1->depth, pPyrDownImg1->nChannels);
		cvPyrDown(pImg, pPyrDownImg, CV_GAUSSIAN_5x5);        //【1】384*256--->192*128
		cvPyrDown(pPyrDownImg, pPyrDownImg1, CV_GAUSSIAN_5x5);//【2】192*128--->96*64
		cvPyrDown(pPyrDownImg1,pPyrDownImg2, CV_GAUSSIAN_5x5);//【3】96*64----->48*32
		cvNamedWindow("【PyrDown】", CV_WINDOW_AUTOSIZE);
		cvMoveWindow ("【PyrDown】", 500, 200);
		cvShowImage("【PyrDown】", pPyrDownImg2);
		//============================================================================================
		//【模块3】设置ROI区域裁剪图片----利用ROI区域将图片裁剪为:32*32
		//============================================================================================
		cvSetImageROI(pPyrDownImg2, cvRect(8, 0, 32, 32));//【1】设置一个32*32的ROI区域
		cvNamedWindow("【ROI_Img】");
		cvMoveWindow ("【ROI_Img】", 700, 200);
		cvShowImage  ("【ROI_Img】", pPyrDownImg2);
		cvSaveImage  (strFilenameAft, pPyrDownImg2);      //【2】将修改图片size之后的图片保存在指定的文件夹下
		++j;
		cv::waitKey(10);
		//============================================================================================
		//【模块4】释放内存空间
		//============================================================================================
		cvReleaseImage(&pPyrDownImg);
		cvReleaseImage(&pImg);                            //【1】释放掉存储图片的内存
		cvDestroyWindow(strWindowname);                   //【2】销毁窗口的内存
		cvDestroyWindow("【ROI_Img】");
		cvDestroyWindow("【PyrDown】");
	}

	return 0;

}

       

        使用上面程序对Image进行图片尺寸归一化,命名的统一等操作.

        没有使用程序处理之前的图片(384*256),图片的命名也不统一,如下图所示:


【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第1张图片

       

       使用程序处理之后的图片,全部变为32*32的JPEG格式的图片,并且图片的命名也进行了统一:


【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第2张图片


      2)建立自己的数据文件夹

      在./caffe/data/目录下建立自己的数据文件夹myself,并且在myself文件夹下建立train文件夹和val文件夹.train文件夹用于存放训练样本,val文件夹用于存放测试样本(验证集),如下图所示:

      【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第3张图片

     

     然后,将你处理好的训练样本图片放在./caffe/data/myself/train/这个文件夹下面,测试样本放在./caffe/data/myself/val/这个文件夹下面.

3)编写train.txt和val.txt文本

    1----train.txt----存放训练图片的图片名和类别标签,一行一张图片,如下所示:

          (这块要特别注意的一点是:在下面这两个文本文件中,图片名和标签之间的距离,只能是一个空格键),如果这两者之间的距离多于或者少于一个[空格键的话],那么,在图片数据---》LMDB数据格式这一步一般不会报错,但是,当计算均值的时候,会出现错误或者问题)

         (比如下面文本文档,我使用了4个空格,就出现了这种问题,现在大家把他们之间的距离调整为一个空格,就可以运行了)

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第4张图片

    2----val.txt------存放测试样本的图片名和类别标签,一行代表一张图片,如下图所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第5张图片

(二)将图片数据转换为LMDB格式的数据:

           在./caffe/examples/文件夹下面,建立myself文件夹,并且将:./caffe/examples/imagenet/文件夹下面的create_imagenet.sh这个shell脚本copy到myself文件夹下,打开,将里面的内容更改为下面的形式,如图所示:


#!/usr/bin/env sh
# Create the myself lmdb inputs
# N.B. set the path to the myself train + val data dirs
set -e

EXAMPLE=examples/myself
DATA=data/myself
TOOLS=build/tools

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset.bin \
    --resize_height=32 \
    --resize_width=32 \
    --shuffle \
    /home/wei/caffe/data/myself/train/ \
    $DATA/train.txt \
    $EXAMPLE/myself_cifar10_train_lmdb

echo "Creating val lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset.bin \
    --resize_height=32 \
    --resize_width=32 \
    --shuffle \
    /home/wei/caffe/data/myself/val/ \
    $DATA/val.txt \
    $EXAMPLE/myself_cifar10_val_lmdb

echo "Done."
      并且,将这个shell脚本的文件名改为:create_cifar_lmdb.sh,使用下面的命令运行,则会产生两个数据库文件:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第6张图片

         产生的连个数据库文件,如下图所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第7张图片

(三)计算图像的均值(减均值操作)

        在./caffe/examples/myself/文件夹下面,创建make_myself_mean.sh这个shell脚本,并且编辑内容如下所示:

#!/usr/bin/env sh
# Compute the mean image from the myself training lmdb
# N.B. this is available in data/myself
TOOLS=./build/tools
DATA=./data/myself
EXAMPLE=./examples

$TOOLS/compute_image_mean.bin $EXAMPLE/myself/myself_cifar10_train_lmdb $EXAMPLE/myself/myself_cifar10_mean.binaryproto

echo "Done."

     在终端执行这个脚本文件,则会产生一个名为:myself_cifar10_mean.binaryproto的均值文件,如下所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第8张图片

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第9张图片


(四)创建网络模型,编写配置文件,编写训练脚本

        1)创建网络模型

          此快,我们使用CIFAR10网络模型,因此,将./examples/cifar10/文件夹下的cifar10_quick_train_test.prototxt网络模型配置文件copy到我们的文件夹./examples/myself/下面,并且进行如下的修改:

name: "CIFAR10_quick"
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {  //【第1块修改的地方】下面是均值文件所在的路径,改为你自己的均值文件所在的路径
    mean_file: "examples/myself/myself_cifar10_mean.binaryproto"
  }
  data_param {       //【第2块修改的地方】下面改为训练样本生成的数据库所在的目录[注意:是训练样本数据库]
    source: "examples/myself/myself_cifar10_train_lmdb"
    batch_size: 10   //【第3块修改的地方】由于我们的训练样本只有400张图片,所以我们一次读入10张图片就可以了
    backend: LMDB
  }
}
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param { //【第4块修改的地方】下面是均值文件所在的路径,改为你自己的均值文件所在的路径
    mean_file: "examples/myself/myself_cifar10_mean.binaryproto"
  }
  data_param {      //【第5块修改的地方】下面改为测试样本生成的数据库所在的目录[注意:是测试样本数据库]
    source: "examples/myself/myself_cifar10_val_lmdb"
    batch_size: 10  //【第6块修改的地方】由于我们的测试样本只有100张图片,所以我们一次读入10张图片就可以了
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
 中间的省略.......
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 5         //【第7块修改的地方】我们现在是5分类问题,所以将第二个全连接层改为5
    weight_filler {
      type: "gaussian"
      std: 0.1
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

        (2)编写超参数配置文件:

         我们也是用同样的方法,直接将./examples/cifar10/文件夹下的cifar10_quick_solver.prototxt这个超参数配置文件

copy到我们的目录下,然后,进行下面的修改就可以了:

#!/usr/bin/env sh
set -e

TOOLS=./build/tools

$TOOLS/caffe train \
  --solver=examples/myself/cifar10_quick_solver.prototxt $@

                           //【1】改为你自己的网络模型配置文件的目录
net: "examples/myself/cifar10_quick_train_test.prototxt"  
test_iter: 10              //【2】预测阶段迭代次数,我们设为10,这样就可以覆盖我们的100张测试样本                             
test_interval: 50          //【3】由于我们只有400张训练样本,所以我们将此改为50,每迭代50次,进行一次测试
base_lr: 0.001             //【4】权值学习率,其实就是在反向传播阶段,权值每次的调整量的程度
momentum: 0.9
weight_decay: 0.004
lr_policy: "fixed"         //【5】在整个过程中,我们使用固定的学习率,当然,你也可以试一下可变学习率
display: 20
max_iter: 500              //【6】400张训练样本,所以我就将最大的迭代次数设为400
snapshot: 400            
snapshot_format: HDF5
snapshot_prefix: "examples/myself/cifar10_quick"
solver_mode: CPU           //【7】我用的是CPU,所以将此快设置为CPU

(3)编写训练脚本

#!/usr/bin/env sh
set -e

TOOLS=./build/tools

$TOOLS/caffe train \
  --solver=examples/myself/cifar10_quick_solver.prototxt $@

然后,运行命令,训练自己的模型:如下图所示:

sudo sh ./examples/myself/train_quick.sh

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第10张图片

     训练过程,如下所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第11张图片

     训练结果显示,正确率为90%,accuracy==0.9,如下图所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第12张图片

(五)训练结果的可视化

1---Accuracy曲线的可视化:

      我们以迭代次数为X轴,以准确率为Y轴,输出的曲线如下所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第13张图片

2---Loss曲线的可视化:

        我们同样以迭代次数为X轴,以损失率为Y轴,可视化结果如下所示:

【深度学习】笔记6:使用caffe中的CIFAR10网络模型和自己的图片数据训练自己的模型(步骤详解)_第14张图片

你可能感兴趣的:(CNN--ANN--Deep,Learning)