conv_lstm实现
看大佬们的代码,各种调用,读起来有点不方便,所以写一个特别简单的
首先要写两个类,一个conv_lstm_cell,一个conv_lstm
要实现的功能,把一个3通道的3030的图像卷价成1通道3030的图像,lstm层数是5(其实是几在这个小实验里头关系不大)
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
class ConvLSTM_Cell(nn.Module):
def __init__(self):
super(ConvLSTM_Cell, self).__init__()
self.conv = nn.Conv2d(in_channels=4, out_channels=1, padding=1, kernel_size=3)
def forward(self, x, h_prev):
combine = torch.cat((x, h_prev), dim=1)
conv = self.conv(combine)
return conv
class ConvLSTM(nn.Module):
def __init__(self):
super(ConvLSTM, self).__init__()
cell_list=[]
for i in range(5):
cell_list.append(ConvLSTM_Cell())
self.cell_list=nn.ModuleList(cell_list)
def forward(self, x, hidden_state=None):
if hidden_state is None:
h = self.init_hidden()
for layeridx in range(5):
h = self.cell_list[layeridx](x, h_prev=h)
return h
def init_hidden(self):
return torch.FloatTensor(np.random.rand(1,1,30,30))
if name == ‘main’:
net=ConvLSTM()
mnist_img=Variable(torch.FloatTensor(np.random.rand(1,3,30,30)))
h=net(mnist_img)
print(h.size())