- 大语言模型全流程开发技术详解:从架构、训练到对齐与量化
艾墨舟启航
大模型实战架构人工智能大语言模型
github:https://github.com/mlabonne/llm-course大语言模型全流程开发技术详解:从架构、训练到对齐与量化大模型实战指南:多模型生态实战与论文解读一、LLM架构(TheLLMarchitecture)不需要对Transformer架构有深入的了解,但了解现代LLM的主要步骤很重要:通过分词化将文本转换为数字,通过包括注意力机制在内的层处理这些分词,最后通过各种
- VLM 系列——Qwen2 VL——论文解读
TigerZ*
AIGC算法AIGC计算机视觉人工智能图像处理
一、概述1、是什么是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器(标准VIT输出后面接patchmerger)+LLM形式。比较创新的是统一视觉处理方式(3DCNN统一视频、图片)+图像缩放方式(自适应缩放)+3DLLM位置编码。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、多图问对话、视频理解对话、json格式、多语言、age
- SAM2论文解读-既实现了视频的分割一切,又比图像的分割一切SAM更快更好
↣life♚
计算机视觉大模型通用模型人工智能计算机视觉深度学习通用分割视频分割算法
code:https://github.com/facebookresearch/sam2/tree/maindemo:https://sam2.metademolab.com/paper:https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/这是SAM这是SAM2Facebook
- 【AI论文精读3】RAG论文综述1-P3-检索器
AI完全体
AI论文解读人工智能机器学习深度学习自然语言处理RAG论文阅读论文笔记
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】P1,P2,P4,P5,P6三、检索器在RAG中,有效地从数据源中检索相关文档至关重要。涉及的关键问题包括检索源、检索粒度、检索的预处理以及选择相应的嵌入模型。3.1.检索源RAG依赖外部知识来增强LLM,而检索源(RetrievalSource)的类型(数据结构)和检索单元的粒度都会影响最终的生成结果。3.1.1.数据结构1.非结构化数
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
vlln
Search&Learning人工智能深度学习搜索引擎神经网络transformer
1stauthorLiangchenLuoYinxiaoLiu-GoogleScholarpaper:[2406.06592]ImproveMathematicalReasoninginLanguageModelsbyAutomatedProcessSupervisioncode:sanowl/OmegaPRM:thisisanimplementationforthepaperImprov
- 活动邀请 | SECon 全球软件工程技术大会深圳站将于6月20—21日举办!
github
SECon全球软件工程技术大会将于6月20日——6月21日在深圳举办!大会精心设置了16个专场,内容涵盖AI前沿论文解读、大数据平台与架构实践、大前端架构实践、AI知识工程体系:从零散知识到流水线、DeepSeek技术前瞻与应用实践、AI时代数据架构的演进、从Agent到Multi-Agent的智能跃迁、高可用架构、垂直深耕:小模型、大智慧、数据分析场景中AI应用、AI+研发的智能化升级、多模态生
- CON:Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models 论文解读
亦万
大模型RAGCOTCON
目前RALM主要存在两个问题:搜索结果误导性:搜索结果依赖其召回和排序,所以不一定和问题相关,不相关的结果融合到大模型中会给大模型带来误导导致错误的答案(甚至有的时候大模型依靠内部记忆能够正确回答);回复幻觉问题:针对无法回答的问题(不管是搜索结果还是内部记忆),大模型有时也会一本正经的胡说八道。本篇paperCON(Chain-of-Note)主要就是解决上面两个问题:如下图所示,有三种情况搜索
- 【2025智源大会论文解读】智能体-林衍凯
weixin_37763484
大模型人工智能算法
另一位人大老师的近期工作汇总,涉及数据合成(生成训练数据,指导agent模型)、奖励模型训练(用于监督agent进行规划)、主动行动(指导agent主动为人类提供服务)、工具选择(支持1600+工作调用)、多模态训练(操作手机)等。0新框架具体实现还没有找到0.1MiniCPM4-Survey:MiniCPM4-Survey是由THUNLP、中国人民大学和ModelBest联合开发的开源大语言模型
- [论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
张较瘦_
前沿技术人工智能论文阅读
【论文解读】SearchArena:搜索增强LLMs的用户偏好与性能分析论文信息作者:MihranMiroyan,Tsung-HanWu,LoganKing等标题:SearchArena:AnalyzingSearch-AugmentedLLMs来源:arXivpreprintarXiv:2506.05334v1,2025一、研究背景:当LLMs需要“上网查资料”时,我们如何评估它?想象你在问AI
- 【论文解读实战篇】Cheetah mini MPC+WBC控制Whole-Body Impulse Control and Model Predictive Control
RoboticsTechLab
机器人实战项目机器人算法
文章目录一、简介二、控制架构1、控制流程2、摆动腿落点规划器3、状态估计器(用于估计躯干的位置、速度、姿态)4、步态调度器和步态规划器三、模型预测控制MPC1.MPC使用的集中质量动力学模型(用于预测泛作用力f)2.模型简化假设四、WBC全身脉冲控制1.WBC使用的多体动力学模型(计算每个关节的力矩)2.优先任务执行(为了计算关节位置、速度和加速度)3.二次规划(为了计算关节转矩指令)4.计算最终
- 【论文解读】CVPR 2024 DSL-FIQA :全新人脸面部图像质量评估算法(附论文地址)
牧锦程
论文解读算法
论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.pdf这篇论文标题为"DSL-FIQA:AssessingFacialImageQu
- 综述论文解读:Editing Large Language Models: Problems, Methods, and Opportunities
cnblogs.com/qizhou/
语言模型人工智能自然语言处理
论文为大语言模型知识编辑综述,发表于自然语言处理顶会ACL(原文链接)。由于目前存在广泛的模型编辑技术,但一个统一全面的分析评估方法,所以本文: 1、对LLM的编辑方法进行了详尽、公平的实证分析,探讨了它们各自的优势和劣势。 2、构建了一个新的数据集,旨在揭示当前模型编辑方法的缺点,特别是泛化和效率方面。 3、概述了模型编辑领域未来潜在的研究机会。 阅读本文请同时参考原始论文图表。问题
- 论文解读:Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adapters
cnblogs.com/qizhou/
论文发表于人工智能顶会NeurIPS(原文链接)。当前的模型编辑器会因多次编辑损害模型性能,提出用于连续编辑的通用检索适配器(GeneralRetrievalAdaptersforContinualEditing,GRACE):使用一个类似字典的结构(适配器)为需要修改的潜在表示构建新的映射,通过更新适配器来实现持续的模型行为编辑。方法 GRACE是一种不修改模型权重编辑预训练模型行为的方法
- 论文解读:Locating and Editing Factual Associations in GPT(ROME)
论文发表于人工智能顶会NeurIPS(原文链接),研究了GPT(GenerativePre-trainedTransformer)中事实关联的存储和回忆,发现这些关联与局部化、可直接编辑的计算相对应。因此: 1、开发了一种因果干预方法,用于识别对模型的事实预测起决定性作用的神经元。 2、为了验证这些神经元是否对应于事实关联的回忆,使用秩一模型编辑(Rank-OneModelEditing,
- [论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
张较瘦_
前沿技术论文阅读人工智能软件工程
【论文解读】MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准论文信息arXiv:2506.03585ImprovingLLM-BasedFaultLocalizationwithExternalMemoryandProjectContextInseokYeo,DuksanRyu,JongmoonBaikSubjects:SoftwareEngineering(cs.SE)一、研究背景:
- [论文阅读] 人工智能 | 当AI遇见绿色软件工程:可持续AI实践的研究新方向
张较瘦_
前沿技术人工智能
【论文解读】当AI遇见绿色软件工程:可持续AI实践的研究新方向论文信息作者:MajaH.Kirkeby,EnriqueBarbaRoque,JustusBogner等标题:GreeningAI-enabledSystemswithSoftwareEngineering:AResearchAgendaforEnvironmentallySustainableAIPractices年份:2025来源:
- 【论文解读】MemGPT: 迈向为操作系统的LLM
vlln
transformer人工智能深度学习自然语言处理
1stauthor:CharlesPackerpaperMemGPT[2310.08560]MemGPT:TowardsLLMsasOperatingSystemscode:letta-ai/letta:Letta(formerlyMemGPT)isthestatefulagentsframeworkwithmemory,reasoning,andcontextmanagement.这个项目现在已
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- Transformer目标检测 | DETR论文解读
DeepDriving
自动驾驶与深度学习transformer目标检测深度学习
0.前言DETR是首个将Transformer应用到2D目标检测任务中的算法,由Facebook于2020年在论文《End-to-EndObjectDetectionwithTransformers》中提出。与传统目标检测算法不同的是,DETR将目标检测任务视为一个直接的集合预测问题,采用基于集合的全局损失通过二分匹配实现一对一的预测输出,不需要非极大值抑制(NMS)和手工设计Anchor这些操作
- 【Strip-MLP论文解读】
A man protect you
计算机视觉图像处理
Strip-MLPAbstractIntroductionMethod——OverallArchitecturePatchEmbeddingPatchMergingMixingBlockStripMixingBlockStripMLPLayer:CascadeGroupStripMixingModule(CGSMM):LocalStripMixingModule(LSMM):ChannelMixi
- 《深入浅出多模态》(六): 多模态经典模型BLIP
GoAI
深入浅出多模态多模态大模型BLIPLLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- A Survey on Multimodal Large Language Models论文解读
call me by ur name
largemodel语言模型人工智能自然语言处理
AbstractRecently,MultimodalLargeLanguageModel(MLLM)representedbyGPT-4Vhasbeenanewrisingresearchhotspot,whichusespowerfulLargeLanguageModels(LLMs)asabraintoperformmultimodaltasks.Thesurprisingemergentc
- ICLR2024论文解读|DP-OPT: MAKE LARGE LANGUAGE MODEL YOUR PRIVACY-PRESERVING PROMPT ENGINEER差分隐私离线提示微调
paixiaoxin
论文合集文献阅读知识图谱人工智能自然语言处理语言模型大型语言模型数据隐私
论文标题DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER差分隐私离线提示微调:让大型语言模型成为你的隐私保护提示工程师论文链接DP-OPT:MAKELARGELANGUAGEMODELYOURPRIVACY-PRESERVINGPROMPTENGINEER论文下载论文作者JunyuanHong,JiachenT.Wa
- 【AI应用】免费的文本转语音工具:微软 Edge TTS 和 开源版 ChatTTS 对比
AI完全体
AI应用人工智能机器学习TTSEdgeChatTTS文本转语音AI应用
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】我试用了下EdgeTTS,感觉还不错,不过它不支持克隆声音(比如自己的声音)微软EdgeTTS和开源版ChatTTS都是免费的文本转语音(TTS)工具,但它们在技术架构、语音质量、使用方式等方面有所不同,适用于不同的使用场景。以下是详细对比:1.EdgeTTSvs.ChatTTS总览对比项微软Edge
- VLM 系列——MiniCPM-Llama3-V 2.5——论文解读
TigerZ*
AIGC算法AIGC人工智能transformer
一、概述1、是什么是一款面向终端设备的多模态大型语言模型(MLLM),论文全称《MiniCPM-V:AGPT-4VLevelMLLMonYourPhone》,它专注于实现在手机等资源受限设备上的高级AI功能,参数8B(llama37B+SigLIPViT-400m/14+视觉标记压缩层)。该模型能够处理包括文本、图像在内的多种数据类型,具备图片描
- Loss-Free Balancing MoE论文解读:无损负载均衡的突破
阿正的梦工坊
DLPapersLLM负载均衡人工智能语言模型自然语言处理
Loss-FreeBalancingMoE论文解读:无损负载均衡的突破《AUXILIARY-LOSS-FREELOADBALANCINGSTRATEGYFORMIXTURE-OF-EXPERTS》是一篇由LeanWang等人于2024年发表的预印本论文,提出了一种新颖的MoE(Mixture-of-Experts)负载均衡策略——Loss-FreeBalancing(无损负载均衡)。该方法通过避免
- 【深度学习】LoRA: Low-Rank Adaptation of Large Language Models,论文解读
XD742971636
深度学习机器学习深度学习语言模型人工智能
文章:https://arxiv.org/abs/2106.09685文章目录摘要介绍LoRA的特点什么是低秩适应矩阵?什么是适应阶段?低秩适应矩阵被注入到预训练模型的每一层Transformer结构中,这一步是如何做到的?摘要自然语言处理的一个重要范式是在通用领域数据上进行大规模预训练,并适应特定任务或领域。随着我们预训练更大的模型,全面微调,即重新训练所有模型参数,变得不太可行。以GPT-31
- Generative Adversarial Nets 论文解读
h161020716
论文精读图像处理gan生成对抗网络
GenerativeAdversarialNets论文解读generative生成adversarial对抗摘要Abstract提出了一个生成模型框架(framework),通过一个对抗的过程,同时训练两个模型:一个生成模型G,G是用来抓取数据的分布,对其进行建模;一个辨别模型D,D来辨别该样本是生成的,还是真实数据。G的目标是让D犯错,D的目标是来辨别出生成的数据(不被欺骗)。每个框架都类似于一
- 【论文解读】End-to-End Autonomous Driving through V2X Cooperation
我叫两万块
人工智能自动驾驶目标检测3d
UniV2X摘要引言方法Sparse-DenseHybridDataGenerationCross-ViewDataFusion(AgentFusion)TemporalSynchronizationwithFlowPredictionSpatialSynchronizationwithRotation-AwareQueryTransformationCross-ViewQueryMatching
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s