- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- 分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目大数据大数据pythonhadoop计算机毕业设计选题计算机毕业设计源码数据分析spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 深入掌握大模型精髓:《实战AI大模型》带你全面理解大模型开发!
努力的光头强
人工智能langchainprompttransformer深度学习
今天,人工智能技术的快速发展和广泛应用已经引起了大众的关注和兴趣,它不仅成为技术发展的核心驱动力,更是推动着社会生活的全方位变革。特别是作为AI重要分支的深度学习,通过不断刷新的表现力已引领并定义了一场科技革命。大型深度学习模型(简称AI大模型)以其强大的表征能力和卓越的性能,在自然语言处理、计算机视觉、推荐系统等领域均取得了突破性的进展。尤其随着AI大模型的广泛应用,无数领域因此受益。AI大模型
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 如何利用AI技术来提升用户的个性化体验和社区参与度?
Itfuture03
AI前沿技术人工智能
要利用AI技术提升用户的个性化体验和社区参与度,可以采取以下几种策略:个性化推荐系统:通过AI算法分析用户的行为和偏好,提供定制化的服务和内容推荐,如智能推荐活动、健康管理等,让居民感受到社区的温暖和关怀。智能助手与聊天机器人:引入AI驱动的虚拟助手,提供实时帮助、个性化建议和交互式对话,改善客户体验。自然语言处理(NLP):实现具有AI能力的NLP,创建对用户友好的应用程序,简化用户体验,如客服
- 什么是监督学习(Supervised Learning)
救救孩子把
AIAI学习
一、监督学习概述监督学习(SupervisedLearning)是一种极具威力的机器学习方法,能够训练算法以识别数据中的模式,并据此进行精准的预测或分类。借助已有的标记数据,监督学习模型学会了从输入到输出的映射关系,进而在各类实际问题中实现自动化决策。无论是医疗诊断、金融市场分析、客户行为预测,还是提升生产效率以及个性化推荐系统等领域,监督学习都彰显出巨大的潜力与价值。随着技术的持续进步,监督学习
- 2025毕业设计指南:如何用Hadoop构建超市进货推荐系统?大数据分析助力精准采购
计算机编程指导师
Java实战集Python实战集大数据实战集课程设计hadoop数据分析springbootjava进货python
✍✍计算机编程指导师⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!⚡⚡Java实战|SpringBoot/SSMPython实战项目|Django微信小程序/安卓实战项目大数据实战项目⚡⚡文末获取源码文章目录⚡⚡文末获取源码基于hadoop的超市进货推荐系
- DL参考资源(二)
antkillerfarm
深度学习
DL参考资源推荐系统https://zhuanlan.zhihu.com/p/26237106深度学习在推荐算法上的应用进展http://i.dataguru.cn/mportal.php?mod=view&aid=11463深度学习在推荐领域的应用https://mp.weixin.qq.com/s/hGvQvddD3i858XSK4z08Ug主要推荐系统算法总结及Youtube深度学习推荐算法
- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于实时深度学习的推荐系统架构设计和技术演进
阿里云云栖号
云栖号技术分享架构阿里巴巴
简介:整理自5月29日阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍本文整理自5月29日阿里云开发者大会,大数据与AI一体化平台分论坛,秦江杰和刘童璇带来的《基于实时深度学习的推荐系统架构设计和技术演进》。分享内容如下:实时推荐系统的原理以及什么是实时推荐系统整体系统的架构及如何在阿里云上面
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 【计算机毕设文章】美食信息推荐系统
xn19950718
计算机毕设文章参考案例课程设计美食数据库前端开发语言需求分析
毕业设计(论文)题目:美食信息推荐系统摘要使用旧方法对美食信息推荐系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在美食信息推荐系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发的美食信息推荐系统对菜谱管理、字典管理、论坛管理、论坛收藏管理、饮食资讯管理、用户管理、管理员管理等进行集中化处理。经过前面自己查阅的网络知识
- 菜谱推荐系统(前台android原生,后台java,SSH,mysql)
weixingliang_123
菜谱食谱android数据库java编程语言mysql
Android菜谱推荐系统(前台android原生,后台java,SSH,mysql)(程序代码,MySQL数据库)【运行环境】MyEclipse(后台)Eclipse(前台)JDK1.7tomcat7【技术栈】JAVA,JSP,mvc,SSH,MYSQL,HTML,CSS,JAVASCRIPT,JQUERY,android原生【项目包含内容】【下载全套源码】【项目功能介绍】
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 推荐系统统计库——systemstat
荣正青
推荐系统统计库——systemstatsystemstatRustlibraryforgettingsysteminformation|alsoonhttps://codeberg.org/valpackett/systemstat项目地址:https://gitcode.com/gh_mirrors/sy/systemstat简介systemstat是一个用Rust语言编写的强大库,它可以获取操
- ssm+vue计科毕业论文(毕设)最全开题怎么选
Ankhiu
javaweb毕设
文章目录1前言2选题汇总3详细介绍题目1:基于SSM的毕业设计管理系统题目2:基于SSM的病人跟踪治疗信息管理系统题目3:基于SSM的大学生兼职跟踪系统题目4:基于SSM的大学生企业推荐系统题目5:基于SSM的电影院在线售票系统题目6:基于SSM的房屋出租出售系统题目7:基于SSM的房屋租赁系统题目8:基于SSM的个人健康信息管理系统题目9:基于SSM的共享充电宝管理系统题目10:基于SSM的即动
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Django+Vue协同过滤算法图书推荐系统的设计与实现
赵广陆
projectdjangovue.js算法
目录1项目介绍2项目截图3核心代码3.1需要的环境3.2Django接口层3.3实体类3.4config.ini3.5启动类3.5Vue4数据库表设计5文档参考6计算机毕设选题推荐7源码获取1项目介绍博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+粉丝,超300w访问量,专注于大学生项目实战开发、讲解和答疑辅导,对于专业性数据证明一切!主要项目:javaweb、
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 大数据:实时大数据和离线大数据
爱写代码的July
大数据与云计算大数据
一实时大数据的介绍及应用场景实时大数据主要是对实时数据流进行处理和分析,数据在生成后几乎立即被处理,以支持快速决策。核心特性低延迟:数据在毫秒或秒级别内处理,几乎实时返回结果。连续流式处理:数据像流一样不断到达并被处理,而不是分批次处理。实时反馈:能够及时响应业务需求,如实时告警、推荐、监控等。应用场景实时推荐系统:如电商、社交媒体等,根据用户行为进行个性化推荐。实时监控:网络安全系统实时监控流量
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 个性化推荐系统-离线召回模型验证
山水阳泉曲
python功能测试线性代数矩阵推荐算法vue
文章目录背景前端核心组件模拟操作用户历史行为后端导入依赖启动服务根据uid获取推荐列表相关推荐用户历史记录用户行为数据上报背景计划构建并优化一个覆盖前端与后端的个性化推荐系统中的离线召回模块。此模块旨在通过高效的数据处理与分析,预先筛选出用户可能感兴趣的内容或商品,为后续的实时推荐流程提供丰富且精准的候选集。为了确保实施效果与性能,我们将设计最简前端界面以直观展示召回结果,同时构建后端服务来处理大
- 基于SpringBoot+Vue协同过滤视频推荐系统
f168bc2b3926
1.技术介绍java+springboot+mysql+mybatis+Vue开发工具:eclipse或idea2.主要功能说明:1)用户注册、登录、首页、个人中心、我的收藏、视频新增、后台管理、2)管理员个人中心、用户管理、视频标签管理、视频信息管理、轮播图管理3)协同过滤算法根据用户的收藏喜好行为计算相似度,给有相近的用户行为推荐视频比如:用户1收藏了视频1、2、3用户2收藏了视频1、3、6用
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- 推荐召回中ALS(交替最小二乘法)算法验证
山水阳泉曲
算法最小二乘法机器学习推荐算法python
文章目录需求流程设计步骤1:数据准备步骤2:模型训练步骤3:评估指标选择步骤4:性能评估代码实现导入依赖Mysql获取数据分批加载到矩阵目标coo_matrixvstackbm25_weight模型训练测试评估完整代码需求为了验证推荐系统中ALS(交替最小二乘)算法的召回效果以及离线数据推荐的效果,我们需要进行一系列的实验步骤。这些步骤包括数据准备、模型训练、评估指标的选择以及最终的性能评估流程设
- 推荐系统中稀疏特征Embedding的优化表示方法
少喝冰美式
embedding算法机器学习人工智能ai大模型大语言模型
本文将介绍两个与稀疏特征Embedding相关的工作。推荐或者CTR预估任务有一个很突出的特点:存在海量稀疏特征。海量意味着数量巨大,稀疏意味着即使在很大的训练数据里,大量特征出现频次也非常低,这往往是由于引入了大量ID类特征带来的。对于DNN排序系统,是否能够找到好的特征Embedding表达方式,对于系统效果是至关重要的。虽然说,如何更好地表征稀疏特征对于模型的泛化能力至关重要,但是,关于这块
- 小琳AI课堂:推荐系统
小琳ai
小琳AI课堂人工智能
大家好,这里是小琳AI课堂!今天我们一起来探索一个让生活变得更加个性化的神奇技术——推荐系统!首先,让我们深入了解一下推荐系统的两大核心技术:协同过滤和内容基础过滤。协同过滤:这种方法通过分析用户之间的行为相似性或项目之间的相似性来进行推荐。用户基础协同过滤:找到和你相似的其他用户,然后推荐他们喜欢的东西给你。项目基础协同过滤:分析项目之间的相似度,推荐和你过去喜欢的项目相似的其他项目。内容基础过
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end