DataParallel(DP):Parameter Server模式,一张卡位reducer,实现也超级简单,一行代码。
有个不能接受的缺陷是:DataParallel是基于Parameter server的算法,所有的loss都在主卡上计算,负载不均衡的问题比较严重,有时在模型较大的时候(比如bert-large),主卡占满了,其他的卡一半都占不到,及其浪费资源。
示例代码:
# coding=utf-8
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
return output
input_size = 5
output_size = 2
batch_size = 30
data_size = 30
dataset = RandomDataset(input_size, data_size)
rand_loader = DataLoader(dataset=dataset,
batch_size=batch_size, shuffle=True)
model = Model(input_size, output_size)
if torch.cuda.is_available():
model.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model) # 关键代码
for data in rand_loader:
if torch.cuda.is_available():
input_var = Variable(data.cuda())
else:
input_var = Variable(data)
output = model(input_var)
是的,你没有看错,这个函数是为了分布式训练设计的。但是,即使在单机多卡上,官方也建议使用新的DistributedDataParallel,采用all-reduce算法。
(1)初始化后端
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
(2)模型并行化
这里也很简单,使用DistributedDataParallel函数warp一下就可以:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
(3)数据并行
这里需要注意,如果指定了sampler,则shuffle=False,其中DataLoader的num_worker是每一个卡独立设置。
dataset = RandomDataset(input_size, data_size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
rand_loader = DataLoader(dataset=dataset,
batch_size=batch_size, shuffle=False, sampler=sampler)
(4)启动脚本
python -m torch.distributed.launch --nproc_per_node=8 train_face_troch.py
完整代码示例:
# coding=utf-8
import torch
import torch.distributed
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import apex
import argparse
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
self.label = torch.mean(self.data, dim=-1)
def __getitem__(self, index):
return self.data[index], self.label[index]
def __len__(self):
return self.len
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
return output
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=0, type=int)
args = parser.parse_args()
return args
input_size = 5
output_size = 2
batch_size = 30
data_size = 30
args = parse_args()
local_rank = args.local_rank
torch.cuda.set_device(local_rank) # 设定cuda的默认GPU,每个rank不同
torch.distributed.init_process_group(backend='nccl', init_method='env://')
dataset = RandomDataset(input_size, data_size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
rand_loader = DataLoader(dataset=dataset,
batch_size=batch_size, shuffle=False, sampler=sampler)
model = Model(input_size, output_size)
if torch.cuda.is_available():
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.CrossEntropyLoss()
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
for data, label in rand_loader:
data = data.cuda()
label = label.cuda()
output = model(data)
loss = criterion(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
大规模数据训练时,混合精度训练时必须的,这速度谁用谁知道。
参考: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
这里主要需要改两个地方,一个是amp.initialize这个函数,一个是backward。
# coding=utf-8
import torch
import torch.distributed
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import apex
import argparse
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
self.label = torch.mean(self.data, dim=-1)
def __getitem__(self, index):
return self.data[index], self.label[index]
def __len__(self):
return self.len
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
return output
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=0, type=int)
args = parser.parse_args()
return args
input_size = 5
output_size = 2
batch_size = 30
data_size = 30
args = parse_args()
local_rank = args.local_rank
# 初始化
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
dataset = RandomDataset(input_size, data_size)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
rand_loader = DataLoader(dataset=dataset,
batch_size=batch_size, shuffle=False, sampler=sampler)
model = Model(input_size, output_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
optimizer = torch.optim.Adam(model.parameters())
model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # 这里是字母O
criterion = torch.nn.CrossEntropyLoss()
if torch.cuda.is_available():
model.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
for data, label in rand_loader:
data = data.cuda()
label = label.cuda()
output = model(data)
loss = criterion(output, label)
optimizer.zero_grad()
#loss.backward()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
torch.load(params_path, map_location=lambda storge, loc: storge.cuda(self.local_rank))
comming soon