蓝桥杯哈夫曼树

/*
基础练习 Huffuman树 
 
问题描述
  Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
  给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
  1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的


和加入到{pi}中。这个过程的费用记为pa + pb。
  2. 重复步骤1,直到{pi}中只剩下一个数。
  在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
  本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。


  例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
  1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,


得到{5, 8, 9, 5},费用为5。
  2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得


到{8, 9, 10},费用为10。
  3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得


到{10, 17},费用为17。
  4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得


到{27},费用为27。
  5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
  输入的第一行包含一个正整数n(n<=100)。
  接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
  输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
*/
import java.util.PriorityQueue;
import java.util.Scanner;




public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
PriorityQueue pq = new PriorityQueue();
for(int i = 0;i < n;i++)
{
pq.add(in.nextInt());
}
int sum = 0;
while(pq.size()!=1)
{
int tmp = pq.remove()+pq.remove(); //取出两个最小的
sum +=(tmp);
pq.add(tmp);
}
System.out.println(sum);
}

}

PriorityQueue使用:http://blog.csdn.net/qq_28584897/article/details/65627077

你可能感兴趣的:(蓝桥杯哈夫曼树)