- 免费的GPT可在线直接使用(一键收藏)
kkai人工智能
gpt
1、LuminAI(https://kk.zlrxjh.top)LuminAI标志着一款融合了星辰大数据模型与文脉深度模型的先进知识增强型语言处理系统,旨在自然语言处理(NLP)的技术开发领域发光发热。此系统展现了卓越的语义把握与内容生成能力,轻松驾驭多样化的自然语言处理任务。VisionAI在NLP界的应用领域广泛,能够胜任从机器翻译、文本概要撰写、情绪分析到问答等众多任务。通过对大量文本数据的
- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- transformer架构(Transformer Architecture)原理与代码实战案例讲解
AI架构设计之禅
大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
transformer架构(TransformerArchitecture)原理与代码实战案例讲解关键词:Transformer,自注意力机制,编码器-解码器,预训练,微调,NLP,机器翻译作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域的发展经历了从规则驱动到统计驱动再到深度学习驱动的三个阶段。
- 英伟达(NVIDIA)B200架构解读
weixin_41205263
芯际争霸GPGPU架构gpu算力人工智能硬件架构
H100芯片是一款高性能AI芯片,其中的TransformerEngine是专门用于加速Transformer模型计算的核心部件。Transformer模型是一种自然语言处理(NLP)模型,广泛应用于机器翻译、文本生成等任务。TransformerEngine的电路设计原理主要包括以下几个方面:
- 【拥抱AI】浅谈Prompt的书写规范及要点
奔跑草-
人工智能人工智能promptRAGAI编程大模型LLMAIAgent
Prompt是什么?Prompt是一种技术,它通过自然语言处理来引导用户与机器之间的交互。在人工智能领域,Prompt通常用于生成文本,例如对话系统、机器翻译和文本摘要等应用。它也用于训练模型,以使其能够理解和生成人类语言。Prompt的工作原理是通过建立相应的语料库和语义解析模型,将自然语言转换为机器可识别的指令。在大模型时代,Prompt的使用尤为重要,因为它可以帮助模型更好地理解用户的意图并
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- mysql 8.0 高可用_MySQL 8.0 MGR(组复制)高可用VIP切换脚本
错过整个世界
mysql8.0高可用
MySQL8.0MGR(组复制)高可用VIP切换脚本发布时间:2020-07-1401:26:18来源:51CTO阅读:1687作者:hcymysqlMySQL8.0MGR(组复制)高可用VIP切换脚本简介:MGR(组复制)官方推荐用MySQLrouter中间件去做MGR高可用故障转移,但其多过了一层网络,性能会下降,并且需要额外维护一套中间件,运维成本过高,于是写了一个类似MHA的master_
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- AI 大模型在文本生成任务中的创新应用
AI_Guru人工智呢
人工智能
概述随着人工智能技术的飞速发展,大模型在文本生成任务中的应用越来越广泛。这些模型通过深度学习技术,能够生成连贯、有意义的文本,甚至在某些情况下达到与人类写作难以区分的程度。本文将探讨AI大模型在文本生成任务中的创新应用,包括自动文摘、机器翻译、创意写作等领域。自动文摘自动文摘是指从给定文本中自动提取关键信息,生成简短摘要的过程。这对于处理大量文本数据、快速获取信息尤为重要。代码示例:基于BERT的
- 热那亚自顾不暇,米兰能否大杀四方?那不勒斯会败吗
阿东侃球
周四002意大利杯:那不勒斯VS佛罗伦萨比赛时间:2022-01-1401:00那不勒斯13胜4平4负,排名意甲第3位。欧联杯获得C组第2位,跻身淘汰赛。双线作战表现不错,命运掌握在自己手中。华丽的进攻依然是那不勒斯的强项:上赛季全队进球、射门、射正和关键传球数都在意甲稳居前3名,射门645次独占鳌头。那不勒斯最近16个主场取得10胜1平5负,成绩不错。那不勒斯连续5场比赛的总进球不超过2个,场面
- Hugging Face教程
小牛笔记
自然语言处理人工智能自然语言处理
HuggingFace教程1.引言在当今数字化时代,自然语言处理(NLP)在各个领域中扮演着重要角色。从文本分类、情感分析到机器翻译和对话系统,NLP技术的应用日益广泛。在NLP领域,HuggingFace是一个备受欢迎的开源工具库,提供了丰富的预训练模型和强大的工具,帮助开发者快速构建和部署NLP应用。2.HuggingFace简介HuggingFace是一个专注于NLP的开源组织,致力于提供易
- RNN及其变体
豫儿啊~
lstm人工智能rnn
RNN及其变体RNN模型定义循环神经网络:一般接受的一序列进行输入,输出也是一个序列作用和应用场景:RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成RNN模型的分类根据输入与输出结构NVsN:输入和输出等长,应用场景:对联生成;词性标注;NERNVs1:输入N,输出为单值,应用场景:文本分类1VsN:输出是一个,输出为N,应用场景:图片文本生成NVsM:输入和输出不等长,应用场景
- 文字模型训练分析评论(算法实战)
富士达幸运星
算法人工智能机器学习
文字模型训练,尤其是在自然语言处理(NLP)领域,是构建能够理解、解释、生成人类语言系统的核心步骤。这类模型广泛应用于文本分类、情感分析、机器翻译、聊天机器人、摘要生成等多个方面。针对文字模型训练后的分析评论,可以从以下几个方面进行:1.性能评估准确率/错误率:评估模型在测试集上的准确率或错误率是最直接的方式,这能反映模型的基本性能。混淆矩阵:对于分类任务,混淆矩阵可以详细展示模型在各个类别上的表
- 什么是LLM,主要用途有哪些,在应用中有哪些优势和局限性?
好好学习的不知名程序员
机器学习深度学习AIGC人工智能
LLM(大型语言模型)在实际应用中的优势包括多领域应用、技术突破、创新应用等。其局限性则包括设计挑战、行为问题、科学难题等。LLM在实际中的应用优势:1.多领域应用:自然语言处理:LLM在机器翻译、语音识别、文本生成等领域表现出色。智能对话系统:LLM能够提供与人类相似的聊天机器人体验。内容创作:从文章写作到代码开发,LLM都能提供高效的辅助。2.技术突破:深度学习架构:LLM基于先进的深度学习技
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 《跨越文化与语言的鸿沟:人工智能的挑战与机遇》
程序猿阿伟
人工智能
在全球化的时代,不同文化和语言之间的交流日益频繁。然而,文化和语言的多样性也带来了理解和交流上的巨大挑战。人工智能作为一项具有变革性的技术,在应对这些差异方面发挥着越来越重要的作用,但同时也面临着诸多困难。语言是文化的载体,每种语言都蕴含着独特的文化内涵、价值观和思维方式。不同语言的语法结构、词汇用法和表达方式千差万别,这使得机器翻译等自然语言处理任务变得异常复杂。例如,某些语言中的词汇可能在其他
- 深度学习--复制机制
Ambition_LAO
深度学习
复制机制(CopyMechanism)是自然语言处理(NLP)中特别是在文本生成任务中(如机器翻译、摘要生成等)使用的一种技术。它允许模型在生成输出时不仅仅依赖于其词汇表中的单词,还可以从输入文本中“复制”单词到输出文本中。这种机制非常有用,尤其是在处理未见过的词汇或专有名词时。1.概念复制机制的基本思想是,在生成每个输出单词时,模型不仅从其词汇表中选择一个词,还可能直接从输入序列中复制一个词。这
- 【ShuQiHere】“从 One-Hot 到 GPT:窥探词表示技术的演变”
ShuQiHere
gpt神经网络机器学习人工智能
【ShuQiHere】在自然语言处理(NLP)领域,如何让机器理解人类语言一直是一个核心问题。而词表示(WordRepresentation)正是解决这个问题的基础技术。通过词表示,我们可以将文本中的词语转化为计算机能够理解和处理的数字向量,这为各种NLP任务,如文本分类、情感分析、机器翻译等,提供了强大的支持。从最早的One-Hot编码,到如今广泛应用的上下文相关词嵌入技术,词表示技术已经走过了
- 探索Ruby的自然语言处理宝库:文本魔法的艺术
2401_85743969
ruby自然语言处理开发语言
标题:探索Ruby的自然语言处理宝库:文本魔法的艺术在人工智能的浪潮中,自然语言处理(NLP)成为了连接人类语言与机器理解的桥梁。Ruby,作为一种优雅而富有表现力的编程语言,拥有一系列强大的NLP库,它们使得文本分析、情感分析、机器翻译等任务变得简单而高效。本文将深入探索Ruby世界中的一些顶尖NLP库,并展示如何使用这些工具来执行实际的NLP任务。RubyNLP库的魔力Ruby的自然语言处理库
- 人工智能中的语言模型演变
机器之心AI
人工智能语言模型自然语言处理
令人惊讶的是,语言模型在这些年间已经显著改变了人工智能领域的整体面貌。设计这些模型的目的是为了理解、人类语言的生成和处理,从自然语言处理到机器翻译甚至创意写作,这些模型日趋复杂且多功能,应用范围从自然语言处理到机器翻译,甚至创意写作。本文详细阐述了语言模型在人工智能领域从早期到先进能力的发展过程。早期的语言模型基于统计方法。这些模型通常被称为n-gram模型,通过计算词序列的频率来预测句子中的下一
- 什么是ChatGPT
丨逐风者丨
什么是ChatGPT?ChatGPT是OpenAI公司训练的一个大型语言模型。它是基于Transformer架构的,拥有超过350GB的参数,可以进行各种自然语言处理任务,如语音识别、机器翻译、对话生成和问答等。ChatGPT模型是在大量的网络文本数据上进行训练的,因此它可以生成高质量的文本内容。它可以根据输入文本生成一段相关的文本,或者回答问题并生成针对性的回答。它还可以根据输入的提示生成一段文
- NLP技术
小天才dhsb
网络其他
自然语言处理(NLP)技术可以应用在多个领域,例如机器翻译、情感分析、文本分类等。以下是几个例子:1.机器翻译:NLP技术可以将一种语言的文本自动翻译成另一种语言。例如,谷歌翻译就是应用了NLP技术,它可以将英语的文本翻译成其他语言,如法语、西班牙语等。2.情感分析:NLP技术可以分析文本中的情感倾向。例如,通过分析社交媒体上用户的评论和推文,可以判断用户对某个产品或事件的情感态度是正面的、负面的
- 小白看得懂的 Transformer
zy_zeros
python开发语言
1.导语谷歌推出的BERT模型在11项NLP任务中夺得SOTA结果,引爆了整个NLP界。而BERT取得成功的一个关键因素是Transformer的强大作用。谷歌的Transformer模型最早是用于机器翻译任务,当时达到了SOTA效果。Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。并且Transformer可以增加到非常深的深度,充分
- 深度学习笔记1:神经网络端到端学习笔记
撒哈拉土狼
深度学习
许多重要问题都可以抽象为变长序列学习问题(sequencetosequencelearning),如语音识别、机器翻译、字符识别。这类问题的特点是,1)输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2)序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN,CNN,RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的端到端学习,
- 深度学习的进展
CuiXg
深度学习人工智能
深度学习的进展深度学习作为人工智能领域的重要分支之一,利用神经网络模拟人类大脑的学习过程,通过数据训练模型以自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得显著进展,尤其在自然语言处理、计算机视觉、语音识别和机器翻译等方面实现了突破性进展。方向一:深度学习的基本原理和算法深度学习基于神经网络概念,涉及反向传播、卷积神经网络、循环神经网络等算法。这些算法模拟人脑神经元间的
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- 【Transformer】Transformer的简单了解:Positional Encoding、Self-attention、Batch 与 Layer Norm 等
magic_ll
transformer深度学习
自从2017年Transformer模型被提出以来,它已经从论文最初的机器翻译领域,转向语音,图像,视频等等方面的应用。最近的SegmentAnything论文提出,阅读论文其中大量的transformer的在图像方面的应用。所以这里还是加紧记录下transformer相关内容。transformer初了解PositionalEncoding(位置编码)Self-attention(自注意力机制)
- ChatGPT和LLM
小米人er
我的博客chatgpt
ChatGPT和LLM(大型语言模型)之间存在密切的关系。首先,LLM是一个更为抽象的概念,它包含了各种自然语言处理任务中使用的各种深度学习模型结构。这些模型通过建立深层神经网络,根据已有的大量文本数据进行文本自动生成。其核心思想是基于训练数据中的统计规律,将输入序列转化为概率分布,进而输出目标序列。这种技术广泛应用于各种自然语言处理任务,如机器翻译、语音识别、文本生成等。而ChatGPT则是基于
- 深度学习的进展
五行缺你94
笔记深度学习人工智能
深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得了显著的进展,尤其在自然语言处理、计算机视觉、语音识别和机器翻译等领域取得了突破性的进展。随着算法和模型的改进、计算能力的提升以及数据量的增长,深度学习的应用范围不断扩大,对各行各业产生了深远的影响。方向一:深度学习的
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/