机器学习:Apriori发现频繁项集和关联规则

参考: [1] 《机器学习实战》 Peter

1. 理论

  1. 概述:

    Apriori算法可以用来发现频繁项集,进而在频繁项集的基础上发现关联规则。

  2. 一些概念:

    频繁项集(frequent item sets): 物品的集合称为项集,经常出现的项集称为频繁项集,例如{啤酒,尿布,豆奶};

    支持度(support):是针对一个项集来定义的,数据集中包含该项集的记录所占的比例,用来衡量一个项集的频繁程度;

    关联规则(association rules):暗指两个项集之间有可能存在很强的关系,例如{尿布}->{葡萄酒}这条关联规则

    可信度(confidence):针对于一条关联规则来定义的,例如“{尿布}->{葡萄酒}”这条关联规则,其可信度为”支持度({啤酒,尿布})/ 支持度({尿布})”,用来衡量关联规则的关联程度。

  3. Apriori原理:

    用枚举遍历所有可能的项集来发现频繁项集或者关联规则,这样的方法复杂度太高了。所以聪明的人类发现了Apriori原理。

    Apriori原理: 如果一个项集是频繁的,那么它的所有子集也是频繁的。

    Apriori原理这么看好像没有什么用,但是我们反过来看:如果一个项集是非频繁的,那么它的所有超集也是非频繁的。

    这样,就可以通过Apriori原理大幅度地减少遍历的数量了。

2. 实现:

  1. 发现频繁项集:

    输入: 所有集合,最小支持度

    输出: 大于最小支持度的所有频繁项集的集合, 各项集对应的支持度

    实现: 附录中的 def apriori(dataSet, minSupport = 0.5):

    data_set = [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
    L, support = apriori(data_set, 0.5)
    print L, support
    
  2. 发现关联规则:

    输入: 频繁项集的集合,各项集对应的支持度,最小置可信度

    输出:所有大于最小可信度的关联规则的集合

    实现:附录中的 def generateRules(L, supportData, minConf=0.7):

    data_set = [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
    L, support = apriori(data_set, 0.5)
    rules = generateRules(L, support, 0.7)
    print rules
    

3. 扩展:

发现频繁项集还有更快的算法,叫做FP-growth算法。

附录

peter提供的代码:


    '''
    Created on Mar 24, 2011
    Ch 11 code
    @author: Peter
    '''
    from numpy import *


    def loadDataSet():
        return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]


    def createC1(dataSet):
        C1 = []
        for transaction in dataSet:
            for item in transaction:
                if not [item] in C1:
                    C1.append([item])

        C1.sort()
        return map(frozenset, C1) # use frozen set so we
                                 # can use it as a key in a dict


    def scanD(D, Ck, minSupport):
        ssCnt = {}
        for tid in D:
            for can in Ck:
                if can.issubset(tid):
                    if not ssCnt.has_key(can): ssCnt[can]=1
                    else: ssCnt[can] += 1
        numItems = float(len(D))
        retList = []
        supportData = {}
        for key in ssCnt:
            support = ssCnt[key]/numItems
            if support >= minSupport:
                retList.insert(0,key)
            supportData[key] = support
        return retList, supportData


    def aprioriGen(Lk, k): #creates Ck
        retList = []
        lenLk = len(Lk)
        for i in range(lenLk):
            for j in range(i+1, lenLk): 
                L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
                L1.sort(); L2.sort()
                if L1==L2: #if first k-2 elements are equal
                    retList.append(Lk[i] | Lk[j]) #set union
        return retList


    def apriori(dataSet, minSupport = 0.5):
        C1 = createC1(dataSet)
        D = map(set, dataSet)
        L1, supportData = scanD(D, C1, minSupport)
        L = [L1]
        k = 2
        while (len(L[k-2]) > 0):
            Ck = aprioriGen(L[k-2], k)
            Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
            supportData.update(supK)
            L.append(Lk)
            k += 1
        return L, supportData


    def generateRules(L, supportData, minConf=0.7):  #supportData is a dict coming from scanD
        bigRuleList = []
        for i in range(1, len(L)):#only get the sets with two or more items
            for freqSet in L[i]:
                H1 = [frozenset([item]) for item in freqSet]
                if (i > 1):
                    rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
                else:
                    calcConf(freqSet, H1, supportData, bigRuleList, minConf)
        return bigRuleList         

    def calcConf(freqSet, H, supportData, brl, minConf=0.7):
        prunedH = [] #create new list to return
        for conseq in H:
            conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence
            if conf >= minConf: 
                print freqSet-conseq,'-->',conseq,'conf:',conf
                brl.append((freqSet-conseq, conseq, conf))
                prunedH.append(conseq)
        return prunedH


    def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
        m = len(H[0])
        if (len(freqSet) > (m + 1)): # try further merging
            Hmp1 = aprioriGen(H, m+1) # create Hm+1 new candidates
            Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
            if (len(Hmp1) > 1):    # need at least two sets to merge
                rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)


    def using_example():
        data_set = loadDataSet()
        L, support = apriori(data_set, 0.5) # find the frequent item set
        rules = generateRules(L, support, 0.7) # find the relative rules
        print rules



    if __name__ == '__main__':
        using_example()

你可能感兴趣的:(机器学习)