神经网络 - 入门

在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。

综述

大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:
1. 结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激活值(activities of the neurons)。
2. 激活函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
3. 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

初识神经网络

如上文所说,神经网络主要包括三个部分:结构、激活函数、学习规则。下图是一个三层的神经网络,输入层有d个节点,隐层有q个节点,输出层有l个节点。除了输入层,每一层的节点都包含一个非线性变换。

那么为什么要进行非线性变换呢?

(1)如果只进行线性变换,那么即使是多层的神经网络,依然只有一层的效果。类似于 0.6(0.2×1+0.3×2)=0.12×1+0.18×2
(2)进行非线性变化,可以使得神经网络可以拟合任意一个函数,下面是一个四层网络的图。

下面使用数学公式描述每一个神经元工作的方式

(1)输入x
(2)计算z=w*x
(3)输出new_x = f(z),这里的f是一个函数,可以是sigmoidtanhrelu等,f就是上文所说到的激活函数。

反向传播(bp)算法

有了上面的网络结构激活函数之后,这个网络是如何学习参数(学习规则)的呢?
首先我们先定义下本文使用的激活函数目标函数

sigmoid激活函数

f(x)=11+ex

def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))

sigmoid函数有一个十分重要的性质:

f(x)=f(x)(1f(x))

,即计算导数十分方便。

def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))

目标函数(差的平方和)

Ek=12j=1l(yj1kyj2k)2

公式中的 12 是为了计算导数方便。

然后,这个网络是如何运作的

(1)数据从输入层到输出层,经过各种非线性变换的过程即前向传播

def feedforward(self, a):
    for b, w in zip(self.biases, self.weights):
        a = sigmoid(np.dot(w, a)+b)
    return a

其中,初始的权重(w)和偏置(b)是随机赋值的

biases = [np.random.randn(y, 1) for y in sizes[1:]]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

(2) 参数更新,即反向传播

反射传播流程:

反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:

(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;

(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;

(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

具体的推导过程,请参数引用2

  • 输入训练集

  • 对于训练集中的每个样本 x ,设置输入层(Input layer)对应的激活值 al
    前向传播:

    zl=wlal1+bl,al=σ(zl)

    其中 σ 指的是激活函数

  • 计算输出层产生的错误:

δL=αCσ(zl)

其中 L 表示神经网络最大层数,C是代价函数, 表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。

代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):

C=12x||y(x)αL(x)||2

其中, x 表示输入的样本, y 表示实际的分类, αL 表示预测的输出, L 表示神经网络的最大层数

  • 反向传播错误:

δl=((wl+1)Tδl+1)σ(zl)

  • 使用梯度下降(gradient descent),训练参数:

wl=wlηmxδx,l(αx,l1)T

bl=blηmxδx,l

python示例

# -*- coding: utf-8 -*-

import random
import numpy as np

class Network(object):

    def __init__(self, sizes):
    """参数sizes表示每一层神经元的个数,如[2,3,1],表示第一层有2个神经元,第二层有3个神经元,第三层有1个神经元."""
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)
                        for x, y in zip(sizes[:-1], sizes[1:])]

    def feedforward(self, a):
        """前向传播"""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):
        """随机梯度下降"""
        if test_data: 
            n_test = len(test_data)
        n = len(training_data)
        for j in xrange(epochs):
            random.shuffle(training_data)
            mini_batches = [
                training_data[k:k+mini_batch_size]
                for k in xrange(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                print "Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test)
            else:
                print "Epoch {0} complete".format(j)

    def update_mini_batch(self, mini_batch, eta):
        """使用后向传播算法进行参数更新.mini_batch是一个元组(x, y)的列表、eta是学习速率"""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb
                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):
        """返回一个元组(nabla_b, nabla_w)代表目标函数的梯度."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # 前向传播
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        """l = 1 表示最后一层神经元,l = 2 是倒数第二层神经元, 依此类推."""
        for l in xrange(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

    def evaluate(self, test_data):
        """返回分类正确的个数"""
        test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def cost_derivative(self, output_activations, y):
        return (output_activations-y)

def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """sigmoid函数的导数"""
    return sigmoid(z)*(1-sigmoid(z))

简单应用

# -*- coding: utf-8 -*-

from network import *

def vectorized_result(j,nclass):
    """离散数据进行one-hot"""
    e = np.zeros((nclass, 1))
    e[j] = 1.0
    return e

def get_format_data(X,y,isTest):
    ndim = X.shape[1]
    nclass = len(np.unique(y))
    inputs = [np.reshape(x, (ndim, 1)) for x in X]
    if not isTest:
        results = [vectorized_result(y,nclass) for y in y]
    else:
        results = y
    data = zip(inputs, results)
    return data

#随机生成数据
from sklearn.datasets import *
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
ndim = X.shape[1]
nclass = len(np.unique(y))

#划分训练、测试集
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(X,y,test_size=0.2,random_state=0)

training_data = get_format_data(train_x,train_y,False)
test_data = get_format_data(test_x,test_y,True)

net = Network(sizes=[ndim,10,nclass])
net.SGD(training_data=training_data,epochs=5,mini_batch_size=10,eta=0.1,test_data=test_data)

引用

  1. http://blog.csdn.net/a819825294/article/details/53393837
  2. 反向传播推导

你可能感兴趣的:(python,神经网络,神经网络,机器学习)