- 基于数据挖掘的股票预测系统
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1股票市场预测的挑战股票市场以其波动性和不可预测性而闻名。无数因素,从全球经济趋势到个别公司公告,都会影响股票价格。这使得准确预测股票价格极具挑战性,即使对经验丰富的投资者和金融分析师也是如此。1.2数据挖掘的兴起近年来,数据挖掘技术的出现为股票预测提供了新的可能性。数据挖掘是从大型数据集中提取有意义的模式和洞察力的过程。通过利用先进的算法和计算能力,数据挖掘可以揭示隐藏在海量金融
- DeepSeek预测25考研分数线
GIS前端嘉欣
考研前端GISwebgis
25考研分数马上要出了。目前,多所大学已经陆续给出了分数查分时间,综合往年情况来看,每年的查分时间一般集中在2月底。等待出成绩的日子,学子们的心情是万分焦急,小编用最近爆火的“活人感”十足的DeepSeek帮大家预测一下25考研的分数线。一起来看看吧~影响国家线的关键因素1)报考人数2023年考研报名人数为474万(首次下降),2024年回升至438万(官方未公布,网传数据存疑)。若2025年报考
- DeepSeek-R1 技术全景解析:从原理到实践的“炼金术配方” ——附多阶段训练流程图与核心误区澄清...
雪停时偶遇一叶春
流程图
合集-人工智能(5)1.如何改进AI模型在特定环境中的知识检索2024-09-242.深度学习与统计学中的时间序列预测2024-10-033.《使用coze搭建一个会搜索、写ppt、思维导图的Agent》2024-10-294.深入浅出:Agent如何调用工具——从OpenAIFunctionCall到CrewAI框架01-145.DeepSeek-R1技术全景解析:从原理到实践的“炼金术配方”—
- 鸢尾花分类项目 GUI
编织幻境的妖
分类数据挖掘人工智能
1.机器学习的定义机器学习是一门人工智能的分支,专注于开发算法和统计模型,使计算机能够在没有明确编程的情况下从数据中自动学习和改进。通过识别数据中的模式和规律,机器学习系统可以做出预测或决策。常见的应用包括图像识别、语音识别、推荐系统等。2.为什么使用鸢尾花数据集(Irisdataset)鸢尾花数据集是一个经典的多类分类问题数据集,由英国统计学家和遗传学家RonaldFisher在1936年引入。
- BP 神经网络在考古数据分析中的应用
fanxbl957
人工智能理论与实践神经网络数据分析人工智能
BP神经网络在考古数据分析中的应用摘要:本文深入探讨了BP神经网络在考古数据分析领域的应用。首先阐述了考古数据分析的重要性以及传统分析方法的局限性。随后详细介绍了BP神经网络的结构、原理与训练算法。通过丰富的代码示例展示了如何运用BP神经网络进行考古文物的分类鉴定、年代预测以及遗址空间分布分析等任务,涵盖数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与局限性,并对其在考古数据分
- 【数据分析】通过个体和遗址层面的遗传相关性网络分析
生信学习者1
数据分析数据分析数据挖掘r语言数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理应用场景加载R包数据下载函数个体层面的遗传相关性网络分析导入数据数据预处理构建遗传相关性的个体网络对个体网络Nij进行可视化评估和选择最佳模型评估和选择最佳模型最佳模型进行总结拟合优度检验遗址层面的遗传相关性网络分析导入数据数据预处理构建遗址之间的遗传相关性网络可视化图条件边预测与模型评估总结系统信息介绍个
- 探索天气预警API:精准预测,守护安全
api
引言在当今这个快速变化的世界中,天气的波动直接影响着人们的日常生活、农业生产、交通出行乃至公共安全。为了有效应对各种极端天气事件,天气预警API应运而生,成为连接气象数据与公众服务的重要桥梁。本文将深入探讨天气预警API的工作原理、应用场景以及其对社会的积极影响。天气预警API的工作原理天气预警API基于先进的气象监测技术和大数据分析,通过收集全球范围内的气象卫星、雷达、地面观测站等数据源,进行实
- 线性回归理论
狂踹瘸子那条好脚
python
###线性回归与Softmax回归####线性回归线性回归是一种用于估计连续值的回归方法。它的应用场景非常广泛,比如在房地产市场中,参观一个房子后,我们可以通过线性回归模型来估计房子的价格,从而决定出价。线性回归的核心思想是通过训练数据来学习参数,使得模型的预测值与真实值之间的差异最小化。在神经网络中,线性回归可以看作是一个单层神经网络。通过损失函数来衡量预测值与真实值之间的差异,常用的损失函数包
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- 中国光伏储能产业2025 - 2030:现状、挑战与前景展望
CodeJourney.
数据库人工智能算法架构python
在全球积极应对气候变化、大力推动能源转型的大背景下,中国光伏储能产业作为新能源领域的关键力量,正处于快速发展的关键时期。2025-2030年,这一产业面临着诸多机遇与挑战,其发展态势不仅关乎中国能源结构的优化和可持续发展目标的实现,也对全球清洁能源转型产生着深远影响。本文将依据Deepseek的预测,深入剖析这一时期中国光伏储能产业的现状、核心驱动力、挑战与风险以及前景展望。一、2025年:产业蓬
- sklearn.ConfusionMatrixDisplay可视化混淆矩阵
Cachel wood
python机器学习和数据挖掘sklearn矩阵人工智能python机器学习vue.jsjava
文章目录ConfusionMatrixDisplay详细解释更多定制化ConfusionMatrixDisplayConfusionMatrixDisplay是scikit-learn库中用于可视化混淆矩阵的一个实用工具。混淆矩阵是一种常用的评估分类模型性能的工具,它可以直观地展示模型在各个类别上的预测结果与真实标签之间的关系。下面详细介绍如何使用ConfusionMatrixDisplay进行混
- AI服务器散热黑科技:让芯片“冷静”提速
小深ai硬件分享
人工智能深度学习服务器
AI服务器为何需要散热黑科技在人工智能飞速发展的当下,AI服务器作为核心支撑,作用重大。从互联网智能推荐,到医疗疾病诊断辅助,从金融风险预测,到教育个性化学习,AI服务器广泛应用,为各类复杂人工智能应用提供强大算力。然而,AI服务器在运行时面临着严峻的散热挑战。随着人工智能技术的不断发展,对AI服务器的计算能力要求越来越高,这使得服务器的功率密度急剧增加。以GPT-4的训练为例,它需要大量的GPU
- DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
小深ai硬件分享
人工智能大数据
AI浪潮下,推理服务器崭露头角在科技飞速发展的当下,AI是耀眼明星,席卷各行业,深刻改变生活与工作模式,从语音助手到医疗诊断、金融风险预测,AI无处不在。其发展分数据收集整理、模型训练、推理应用三个阶段,过去重模型训练,如今大量预训练模型出现,如何高效应用成新挑战,推理服务器应运而生。推理服务器是运行AI模型、对输入数据实时分析预测的硬件设备,堪称AI应用“幕后英雄”。在自动驾驶、智能安防、电商推
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- ARMA预测出现NotImplementedError
Happybees
python
ARMA显示失败?求助帖!ARMA预测出现NotImplementedError,[在进行ARMA预测时出现了这种错误,是什么情况呀
- 训练与优化
钰见梵星
小土堆PyTorch深度学习深度学习pytorch人工智能
训练与优化损失函数与反向传播损失函数能够衡量神经网络输出与目标值之间的误差,同时为反向传播提供依据,计算梯度来优化网络中的参数。torch.nn.L1Loss计算所有预测值与真实值之间的绝对差。参数为reduction:'none':不对损失进行任何求和或平均,返回每个元素的损失。'mean':对损失进行平均,默认选项。'sum':对所有样本的损失进行求和。importtorchinput=tor
- R语言中的函数32:seq_along()
zoujiahui_2018
#R语言中的函数r语言开发语言
介绍seq_along函数在R语言中用于生成一个整数序列,其长度与给定对象的长度相同。这个函数特别有用,当你想要创建一个索引序列来遍历一个向量或列表时。用法seq_along(x)参数x:任何R对象(如向量、列表等)。返回值:返回一个从1到x的长度的整数序列。示例#创建一个向量vec<-c("a","b","c")#使用seq_along生成索引indices<-seq_along(vec)pri
- DeepSeek 本地部署硬件配置全解析
喜-喜
人工智能深度学习DeepSeek配置要求
DeepSeek这个开源界的“学霸”,凭借低成本和高性能,收获了超多关注。不少朋友都想把它“请回家”,在本地部署,享受离线使用、更好的数据安全和隐私保护这些福利。今天就来唠唠请DeepSeek“回家”需要准备哪些硬件“装备”。DeepSeek简介DeepSeek可是个厉害角色,在各种应用场景里都能大显身手,提供超准确的预测和分析。而且它可“省钱”了,预训练费用还不到OpenAIGPT-4o模型的十
- 2020年物联网白皮书深度解析
你这人真狗
本文还有配套的精品资源,点击获取简介:《物联网白皮书(2020年)》深入分析了物联网的发展核心问题、趋势和挑战。物联网通过网络将各种设备连接起来,面临数据安全、设备连接标准化及海量数据处理等关键问题。该白皮书针对技术成熟度、市场渗透率及法规政策提出了策略建议,并对未来展望包括新技术应用和行业影响进行了预测。1.物联网核心问题分析1.1物联网定义与核心技术物联网(IoT)是通过信息传感设备,按照约定
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 全球及中国印度香米市场2025-2031:发展趋势、竞争格局与战略选择
qry行业分析
人工智能大数据
根据QYR(恒州博智)的统计及预测,2024年全球印度香米市场销售额达到了143.2亿美元,预计2031年将达到251.5亿美元,年复合增长率(CAGR)为8.5%(2025-2031)。全球印度香米主要厂商有KRBL、AmiraNatureFoods、LTFoods、BestFoods、KohinoorRice等,全球前五大厂商占有超过15%的市场份额。目前印度是全球最大的印度香米市场,占有大约
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 消费者调查,助力企业把握市场先机
zhonglidc01
市场调查咨询消费者调查人工智能大数据
在瞬息万变的商业世界中,(成都市场调查公司)企业如同在波涛汹涌的大海里航行的船只,要想乘风破浪、一帆风顺,(市场调研)就必须精准把握市场的风向,(消费者研究)而消费者市场调查便是那至关重要的“风向标”。成都中立调查公司,作为扎根成都17年的本土调研行家,凭借深厚的经验沉淀和专业的调研能力,深知消费者市场调查对于企业抢占市场先机的关键价值,通过及时、准确的调查,为企业源源不断地输送市场趋势预测和消费
- 2025年前端工程师职业发展的系统性应聘规划
IT木昜
前端
2025年前端工程师职业发展的系统性应聘规划,结合技术趋势、企业需求和竞争力提升策略,分为技术栈学习、项目实战、求职策略三部分:一、2025年前端技术趋势与核心技能1.必学技术栈(基础+进阶)层级技术方向具体技能基础核心语言-HTML6新特性(预测)、CSS容器查询、TypeScript5.0+主流框架React22+(ServerComponents)、Vue4.0(VaporMode)、Sve
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- AI 百炼成神:线性回归,预测房价
github_czy
AI百炼成神:100个项目玩转人工智能python开发语言
我们开始第一个项目——线性回归:预测房价。这是一个经典的机器学习入门项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。理解如何评估模型的性能。项目步骤准备数据集为了演示线性回归,我们将使用一个常见的房价数据集:波士顿房价数据集(BostonHousingDataset)。这个数据集包含了多个特征(
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- 使用R语言绘制山脊图的ggridges包
心之飞翼
r语言开发语言R语言
使用R语言绘制山脊图的ggridges包山脊图(ridgeplot)是一种用于可视化多个分布或变量之间关系的图表类型。在R语言中,可以使用ggridges包来创建漂亮的山脊图。本文将介绍如何使用ggridges包绘制山脊图,并提供相应的源代码供参考。首先,确保已经安装了ggridges包。可以使用以下代码来安装:install.packages("ggridges")安装完毕后,加载ggridge
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb