- 机器学习专栏博文汇总
python游乐园
机器学习机器学习人工智能合集
本篇汇集了Python游乐园中机器学习专栏博文,会持续更新,需要的小伙伴可以收藏一下Python机器学习实战:基于不同机器学习算法的鸢尾花数据集分析机器学习常见问题:过拟合及其处理方式结构化数据和非结构化数据的区别是什么如何选择合适的机器学习算法来处理非结构化数据可用于文本分析的机器学习算法都有哪些Python机器学习实战:遗传算法机器学习基础:什么是启发式算法机器学习中常用的调节参数的方法(附P
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- 机器学习实战——音乐流派分类(主页有源码)
喵了个AI
机器学习实战机器学习分类人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.简介音乐流派分类是音乐信息检索(MusicInformationRetrieval,MIR)中的一个重要任务,旨在通过分析音频信号的特征,将音乐自动分类到不同的流派(如古典、摇滚、爵士、流行等)。随着数字音乐平台的普及,音乐流派分类技术被广泛应用于音乐推荐、自动标签生成和音乐库管理
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 《机器学习实战:从数据清洗到云端部署的可视化进阶指南(三)》
庸俗今天不摸鱼
机器学习人工智能python
▍前言:阶段核心突破当前已完成模型开发与优化升级核心任务,成功将理论模型转化为工业级解决方案。本阶段基于前期标准化数据,实现从基础模型构建到高性能算法迭代的跨越式发展。▍章节回顾:攻坚与优化成果3.模型开发阶段算法实现:逻辑回归:搭建分类基线(LogisticRegression,准确率基准)支持向量机:对比线性核与RBF核性能差异(F1-score提升12%)K近邻:动态优化邻居数(k=5时验证
- 机器学习实战:从理论到实践
静默.\\
机器学习人工智能
随着人工智能技术的迅猛发展,机器学习作为其核心部分,已经广泛应用于各个领域。它不仅在科技公司中扮演着关键角色,在医疗、金融、零售等行业也展现了巨大的潜力。然而,对于许多初学者来说,如何将理论知识转化为实际操作是一个挑战。本文旨在通过一个具体的案例——预测房价,来介绍机器学习的基本流程和具体操作步骤。我们将使用Python编程语言及其相关的科学计算库,如NumPy、Pandas、Scikit-Lea
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- Python机器学习实战:独热编码
python游乐园
机器学习python机器学习人工智能
独热编码(One-HotEncoding)是一种用于将分类数据转换为适合机器学习算法处理的数值型数据的编码技术。基本概念在机器学习中,很多算法要求输入的数据是数值型的,但实际数据中常常包含分类变量,比如颜色(红、绿、蓝)、性别(男、女)等。独热编码就是为了解决这个问题而设计的,它将每个类别变量转换为一个二进制向量。原理对于一个具有n个不同类别的分类变量,独热编码会创建一个长度为n的二进制向量。在这
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 《机器学习实战》——在python中使用Matplotlib注解绘制树形图
哆啦AA梦
python机器学习python机器学习
#encoding=utf-8#使用文本注解绘制树形图importmatplotlib.pyplotaspltdecisionNode=dict(boxstyle="sawtooth",fc="0.8")leafNode=dict(boxstyle="round4",fc="0.8")arrow_args=dict(arrowstyle="<-")#上面三行代码定义文本框和箭头格式#定义决策树决策
- Python从0到100(六十一):机器学习实战-实现客户细分
是Dream呀
python机器学习开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- 【机器学习实战入门】使用OpenCV进行性别和年龄检测
精通代码大仙
数据挖掘深度学习python机器学习pythonopencv数据挖掘人工智能
GenderandAgeDetectionPython项目首先,向您介绍用于此高级Python项目的性别和年龄检测中的术语:什么是计算机视觉?计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处理、分析和理解数字图像,旨在从现实世界中提取高维数据,从而生成可用来做决策的符号或数值信息。该过程通常包括物体识别、视频跟踪
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- 【机器学习实战入门项目】基于机器学习的鸢尾花分类项目
精通代码大仙
数据挖掘python深度学习机器学习分类人工智能大数据数据挖掘算法python
基于机器学习的鸢尾花分类项目介绍:本项目利用机器学习模型对鸢尾花进行分类。鸢尾花数据集是一个著名的机器学习数据集,包含三种类别的花朵:Setosa、Versicolor和Virginica,每种类别由四个特征描述:萼片长度、萼片宽度、花瓣长度和花瓣宽度。什么是机器学习?机器学习是关于从数据中学习预测或提取知识的过程。它是人工智能的一个子领域。机器学习算法基于样本数据(即训练数据)构建模型,并根据训
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 机器学习实战----波士顿房价预测模型
永远偷渡不了的非洲人
机器学习机器学习sklearnpython
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
- python logistic模型_Python实践之逻辑回归(Logistic Regression)
weixin_39922394
pythonlogistic模型
机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了。这节学习的是逻辑回归(LogisticRegression),也算进入了比较正统的机器学习算法。啥叫正统呢?我概念里面机器学习算法一般是这样一个
- (二十一)Seaborn知识学习8-python数据分析与机器学习实战(学习笔记)
努力奋斗的durian
文章原创,最近更新:2018-05-17课程来源:python数据分析与机器学习实战-唐宇迪引言:介绍seaborn热度图绘制学习参考链接:1、Seaborn官方0.8.1版本首先介绍以下热度图的作用,拿出离散群数据,离散群数据可能会发生波动变化.看一下哪个点的值比较高,看一下哪个点的值比较低?通过值的变化,用颜色表现出来,这个是我们要做的一件事.热度图是由不同的颜色构成的,这个颜色由可能是由浅入
- 机器学习实战2--蒙特卡洛方法与Q-Q图(2022/10/12)
点灯的棉羊
机器学习Jupyter笔记机器学习人工智能numpypython
蒙特卡洛方法与Q-Q图文章目录蒙特卡洛方法与Q-Q图蒙特卡洛方法蒙特卡洛的定义和基本步骤一些常用的概率论相关函数使用蒙特卡洛验证大数定理Q-Q图Q-Q图的定义及用途importnumpyasnpfromnumpy.linalgimportinv,eigimportmatplotlib.pyplotaspltimportpandasaspdfromscipy.statsimportnorm蒙特卡洛方
- 机器学习实战1-基础运用(2022/10/11)
点灯的棉羊
机器学习Jupyter笔记机器学习pythonnumpy
机器学习实战1-基础运用文章目录机器学习实战1-基础运用numpy的简单运用生成矩阵和矩阵的简单操作用pandas库读取、保存csv数据文件read_csv()函数及读入的数据处理to_csv()保存数据matplotlib.pyplot库绘图的使用条形图的绘制箱型图的绘制分位数(Quantile)分位点/四分位数分位数与箱型图`boxplot()`函数绘制交叉报表热力图plt绘图基础import
- 机器学习实战Jupyter笔记专栏汇总
点灯的棉羊
机器学习Jupyter笔记机器学习jupyter人工智能
机器学习实战Jupter笔记开始博客学校开始的一门机器学习的课程,于是使用jupyter写这门课的作业,顺便将其完善为笔记发表为这个专栏的博客,并将专栏博客链接汇总到这里。由于是刚开始学习机器学习方面的内容,如有错误的地方,希望能有大佬能帮忙指正。笔记1机器学习实战1-基础运用种一棵树最好的时间–是十年前,其次是现在
- 朴素贝叶斯算法
YuanDaima2048
机器学习算法学习算法机器学习人工智能深度学习pythonsklearn
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:机器学习实战工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤等领域。朴素贝叶斯算法简单易懂,其核心思想是假设在给定目标值时,各个属性之间相互独立。在实际应用中,朴素贝叶斯算法在垃圾邮件过滤中表现出色。它不仅准确率高,而且速度快
- 【机器学习实战】大数据与MapReduce
吵吵人
当运算需求超出了当前资源的运算能力,一、可以考虑购买更好的机器;二、可以将计算转换成并行作业,MapReduce就提供了这种方案的一个具体实施框架。MapReduce:分布式计算的框架MapReduce是一个软件框架,可以将单个计算工作分配给多台计算机执行。工作流程包括map和reduce阶段。第一阶段,输入数据被切片分发到节点上,各个节点对本地数据进行处理对应的运算代码叫做mapper。第二阶段
- [培训-Python机器学习]04-Git的使用和规范
乱码奇糟
软件开发git
参考书Python机器学习实战作者裔隽张怿檬张目清出版社科学技术文献出版社难度入门安排计划:本章30分钟;作业:上网查阅Linus开发Git的背景;分析所在的开发团队所用的协作开发流程是什么?总结出Git使用和Git流程中遇到过的3个问题,发给大家讨论。非常有意思:2005年,由Linux的创始人LinusTorvalds开发;临危赴命,用时2周。分布式、本地管理、分支管理、提交机制Github、
- [培训-Python机器学习]02-使用conda管理环境和包
乱码奇糟
软件开发pythonconda
参考书Python机器学习实战作者裔隽张怿檬张目清出版社科学技术文献出版社难度入门安排计划:本章30分钟;作业:培训后实践本章的各种操作;结果:以Python3.10创建开发虚拟环境;再创建一个Python3.7版本以下的虚拟环境用来调试兼容性以前培训过venv,本次培训来说一说conda。conda其实可理解为:venv+pip,它的主要功能包括:环境管理:创建多个隔离的Python运行环境,每
- 机器学习(machine learning)大合集
AI信仰者
1、线性分类器怎么理解呢?我们可以把此分类器理解为线性空间的划分,最简单的,在二维空间上,通过直线的划分。第二个理解可以理解为模板匹配,W的每一行可以看做是其中一个类别的模板。每类得分,实际上是像素点和模板匹配度。模板匹配的方式是内积计算。2、机器学习实战之AdaBoost算法boosting算法系列的基本思想,如下图:adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基
- 机器学习实战 朴素贝叶斯分类器
shenny_
基于概率论的分类方法:朴素贝叶斯我的微信公众号:s406205391;欢迎大家一起学习,一起进步!!!k-近邻算法和决策树会给出“该数据属于哪一类”的明确回答。不过,分类器有时会产生错误结果,这是可以要求分类器给出一个最优的类别的猜测结果,同事给出这个猜测的概率估计值。朴素贝叶斯就是一个概率分类器。我们称之为“朴素”,是因为整个形式化的过程只做最原始、最简单的假设。朴素贝叶斯的优点:在数据较少的情
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情