Pytorch下的迁移学习

在实际应用中,自己设计网络往往是不合理的,因此对已经训练好的模型进行调整,作为新的模型,这种方式叫做迁移学习。
迁移学习主要有以下两个应用场景:

  • Finetuning :该模式下使用已训练好的模型初始化网络
  • 特征提取:冻结网络底层结构,除了全连接层。重新设计新的全连接层,并对其参数进行训练。

导入相应的包

# Author: Little chen

from __future__ import  print_function
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets,models,transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()

加载数据

在这里将使用torchvisiontorch.utils.data加载训练集和测试集。
我在这里将设计一个简单的分类ants和bees的分类器。数据集可以从这里下载。其中,每类训练集包含100张图像,每类训练集包含75张图像。由于数据集比较小,因而采用数据增强(Data augmentation),并对训练集和验证集进行归一化处理。

data_transforms = {
    'train':transforms.Compose({
        transforms.RandomResizedCrop((224,224)),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])
    }),
    'val':transforms.Compose([
        transforms.Resize((256,256)),
        transforms.CenterCrop((224,224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])
    ])
}

data_dir = 'E:/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,x),
                                          data_transforms[x])
                  for x in ['train','val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=4,
                                              shuffle=True,num_workers=4)
               for x in ['train','val']}
datasets_sizes = {x: len(image_datasets[x]) for x in ['train','val']}
class_names = image_datasets['train'].classes

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

可视化处理:观察其中的几幅图像

def imshow(inp, title=None):
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(10)  # pause a bit so that plots are updated

inputs, classes = next(iter(dataloaders['train']))

out = torchvision.utils.make_grid(inputs)
imshow(out,title=[class_names[x] for x in classes])

Pytorch下的迁移学习_第1张图片

训练模型

下面实现一个训练模型的通用方法:

  • 设置学习率
  • 保存最佳模型
    下面代码中的参数scheduler是torch.optim.lr_scheduler中的LR scheduler 对象
def train_model(model,criterion,optimizer,sheduler,num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch,num_epochs-1))
        print('-' * 10)

        for phase in ['train','val']:
            if phase == 'train':
                sheduler.step()
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            running_corrects = 0

            for inputs,labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = inputs.to(device)

                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _,preds = torch.max(outputs,1)
                    loss = criterion(outputs,labels)

                    if phase == 'train':
                        loss.backword()
                        optimizer.step()

                running_loss += loss.item()*inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / datasets_sizes[phase]
            epoch_acc = running_corrects.double()/datasets_sizes[phase]

            print('{} Loss: {:.4f}   Acc: {:.4f'.format(phase,epoch_loss,epoch_acc))

            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict)

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60,time_elapsed % 60))
    print('Best val acc: {:4f}'.format(best_acc))

    model.load_stat_dict(best_model_wts)
    return model

Finetuning 卷积神经网络

加载预训练网络并重置顶层全连接网络

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = model_ft.Linear(num_ftrs,2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(),lr=0.001,momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft,step_size=7,gamma=0.1)#每7个时期对LR衰减0.1倍

训练和验证

model_ft = train_model(model_ft,criterion,optimizer_ft,exp_lr_scheduler,num_epochs=25)

输出:

Epoch 0/24
----------
train Loss: 0.5797 Acc: 0.6844
val Loss: 0.2633 Acc: 0.9020

Epoch 1/24
----------
train Loss: 0.4807 Acc: 0.7705
val Loss: 0.6446 Acc: 0.7255

Epoch 2/24
----------
train Loss: 0.6137 Acc: 0.7623
val Loss: 0.6395 Acc: 0.7974

Epoch 3/24
----------
train Loss: 0.5810 Acc: 0.7910
val Loss: 0.3823 Acc: 0.8366

Epoch 4/24
----------
train Loss: 0.4411 Acc: 0.8279
val Loss: 0.6081 Acc: 0.8562

Epoch 5/24
----------
train Loss: 0.6720 Acc: 0.7582
val Loss: 0.2470 Acc: 0.8693

Epoch 6/24
----------
train Loss: 0.3643 Acc: 0.8238
val Loss: 0.2233 Acc: 0.8824

Epoch 7/24
----------
train Loss: 0.3677 Acc: 0.8443
val Loss: 0.1998 Acc: 0.9281

Epoch 8/24
----------
train Loss: 0.2423 Acc: 0.8893
val Loss: 0.2009 Acc: 0.9020

Epoch 9/24
----------
train Loss: 0.3458 Acc: 0.8484
val Loss: 0.1980 Acc: 0.9020

Epoch 10/24
----------
train Loss: 0.2745 Acc: 0.8770
val Loss: 0.1974 Acc: 0.9085

Epoch 11/24
----------
train Loss: 0.3043 Acc: 0.8648
val Loss: 0.1889 Acc: 0.9020

Epoch 12/24
----------
train Loss: 0.3017 Acc: 0.8566
val Loss: 0.2205 Acc: 0.8889

Epoch 13/24
----------
train Loss: 0.2322 Acc: 0.8975
val Loss: 0.1870 Acc: 0.9085

Epoch 14/24
----------
train Loss: 0.2776 Acc: 0.8852
val Loss: 0.1767 Acc: 0.9216

Epoch 15/24
----------
train Loss: 0.1823 Acc: 0.9467
val Loss: 0.1879 Acc: 0.9281

Epoch 16/24
----------
train Loss: 0.3140 Acc: 0.8689
val Loss: 0.1772 Acc: 0.9412

Epoch 17/24
----------
train Loss: 0.3295 Acc: 0.8770
val Loss: 0.1873 Acc: 0.9216

Epoch 18/24
----------
train Loss: 0.3400 Acc: 0.8361
val Loss: 0.2008 Acc: 0.9085

Epoch 19/24
----------
train Loss: 0.3275 Acc: 0.8648
val Loss: 0.1914 Acc: 0.9150

Epoch 20/24
----------
train Loss: 0.2170 Acc: 0.9139
val Loss: 0.2222 Acc: 0.9020

Epoch 21/24
----------
train Loss: 0.2360 Acc: 0.8934
val Loss: 0.2031 Acc: 0.9085

Epoch 22/24
----------
train Loss: 0.2943 Acc: 0.8484
val Loss: 0.1837 Acc: 0.9477

Epoch 23/24
----------
train Loss: 0.2554 Acc: 0.8975
val Loss: 0.1759 Acc: 0.9346

Epoch 24/24
----------
train Loss: 0.2747 Acc: 0.8689
val Loss: 0.1753 Acc: 0.9346

Training complete in 1m 7s
Best val Acc: 0.947712
visualize_model(model_ft)

Pytorch下的迁移学习_第2张图片

特征提取

这里除了顶层外,需要冻结其他层,同时需要将requires_grad == False来冻结参数,以防止在backword时计算梯度。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

训练和验证

model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)

输出:

Epoch 0/24
----------
train Loss: 0.6236 Acc: 0.6926
val Loss: 0.2246 Acc: 0.9150

Epoch 1/24
----------
train Loss: 0.4739 Acc: 0.7910
val Loss: 0.1979 Acc: 0.9412

Epoch 2/24
----------
train Loss: 0.4347 Acc: 0.7828
val Loss: 0.1912 Acc: 0.9346

Epoch 3/24
----------
train Loss: 0.4254 Acc: 0.8197
val Loss: 0.1704 Acc: 0.9412

Epoch 4/24
----------
train Loss: 0.5347 Acc: 0.7746
val Loss: 0.1460 Acc: 0.9542

Epoch 5/24
----------
train Loss: 0.6257 Acc: 0.7582
val Loss: 0.2418 Acc: 0.9150

Epoch 6/24
----------
train Loss: 0.3703 Acc: 0.8279
val Loss: 0.1999 Acc: 0.9216

Epoch 7/24
----------
train Loss: 0.4697 Acc: 0.7705
val Loss: 0.1882 Acc: 0.9216

Epoch 8/24
----------
train Loss: 0.3529 Acc: 0.8238
val Loss: 0.1662 Acc: 0.9477

Epoch 9/24
----------
train Loss: 0.4021 Acc: 0.8238
val Loss: 0.1558 Acc: 0.9542

Epoch 10/24
----------
train Loss: 0.3810 Acc: 0.8566
val Loss: 0.1507 Acc: 0.9542

Epoch 11/24
----------
train Loss: 0.3658 Acc: 0.8320
val Loss: 0.1585 Acc: 0.9477

Epoch 12/24
----------
train Loss: 0.3809 Acc: 0.8115
val Loss: 0.1528 Acc: 0.9477

Epoch 13/24
----------
train Loss: 0.2164 Acc: 0.9180
val Loss: 0.1700 Acc: 0.9542

Epoch 14/24
----------
train Loss: 0.2853 Acc: 0.8730
val Loss: 0.1745 Acc: 0.9281

Epoch 15/24
----------
train Loss: 0.3199 Acc: 0.8566
val Loss: 0.1572 Acc: 0.9412

Epoch 16/24
----------
train Loss: 0.3254 Acc: 0.8402
val Loss: 0.1530 Acc: 0.9608

Epoch 17/24
----------
train Loss: 0.3239 Acc: 0.8525
val Loss: 0.1735 Acc: 0.9346

Epoch 18/24
----------
train Loss: 0.2927 Acc: 0.8730
val Loss: 0.1513 Acc: 0.9542

Epoch 19/24
----------
train Loss: 0.3030 Acc: 0.8648
val Loss: 0.1551 Acc: 0.9542

Epoch 20/24
----------
train Loss: 0.3867 Acc: 0.8402
val Loss: 0.1542 Acc: 0.9542

Epoch 21/24
----------
train Loss: 0.2517 Acc: 0.8975
val Loss: 0.1560 Acc: 0.9542

Epoch 22/24
----------
train Loss: 0.2935 Acc: 0.8811
val Loss: 0.1617 Acc: 0.9542

Epoch 23/24
----------
train Loss: 0.3000 Acc: 0.8730
val Loss: 0.1631 Acc: 0.9477

Epoch 24/24
----------
train Loss: 0.3124 Acc: 0.8443
val Loss: 0.1572 Acc: 0.9477

Training complete in 0m 35s
Best val Acc: 0.960784
visualize_model(model_conv)

plt.ioff()
plt.show()

Pytorch下的迁移学习_第3张图片

你可能感兴趣的:(深度学习)