剑指Offer算法-求二叉树深度

题目如下:

输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。

 

思路:

二叉树的深度计算,首先要判断节点,以下是计算二叉树的详细步骤:

1、一颗树只有一个节点,它的深度是1;

2、二叉树的根节点只有左子树而没有右子树,那么可以判断,二叉树的深度应该是其左子树的深度加1;

3、二叉树的根节点只有右子树而没有左子树,那么可以判断,那么二叉树的深度应该是其右树的深度加1;

4、二叉树的根节点既有右子树又有左子树,那么可以判断,那么二叉树的深度应该是其左右子树的深度较大值加1。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。

具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子节点,至多有2k-1个节点。

 

代码:

class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;

    public TreeNode(int val) {
        this.val = val;

    }

}

public class Solution {
    public int TreeDepth(TreeNode root) {
        if(root == null){
            return 0;
        }
        int left = TreeDepth(root.left);
        int right = TreeDepth(root.right);
        if(left >= right){
            return left+1;
        }else{
            return right+1;
        }
    }
}

 

你可能感兴趣的:(算法)