人工智能的过去、现在和未来

人工智能的过去、现在和未来_第1张图片

来源: 人工智能和大数据 作者: 腾讯 AI Lab 主任 张潼


在回答人工智能达到了什么程度这个问题之前,需先了解人工智能的概念是什么?


人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。


人工智能的过去、现在和未来_第2张图片


另外,了解一下AI的发展历史,有哪些关键里程碑?


AI 在五六十年代时正式提出,90 年代,国际象棋冠军卡斯帕罗夫与"深蓝" 计算机决战,"深蓝"获胜,这是人工智能发展的一个重要里程碑。而 2016 年,Google 的 AlphaGo 赢了韩国棋手李世石,再度引发 AI 热潮。今年,腾讯推出围棋软件"绝艺"大放异彩,这些都代表了特定时期 AI 发展的技术水平。


人工智能的过去、现在和未来_第3张图片


AI 不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从 70 年代 personal 计算机的兴起到 2010 年 GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。


人工智能的过去、现在和未来_第4张图片


同时,互联网及移动互联网的发展也带来了一系列数据能力,使人工智能能力得以提高。而且,运算能力也从传统的以 CPU 为主导到以 GPU 为主导,这对 AI 有很大变革。算法技术的更新助力于人工智能的兴起,最早期的算法一般是传统的统计算法,如 80 年代的神经网络,90 年代的浅层,2000 年左右的 SBM、Boosting、convex 的 methods 等等。随着数据量增大,计算能力变强,深度学习的影响也越来越大。2011 年之后,深度学习的兴起,带动了现今人工智能发展的高潮。


其次,AI 有哪些研究领域和分支?


人工智能研究的领域主要有五层,最底层是基础设施建设,包含数据和计算能力两部分,数据越大,人工智能的能力越强。往上一层为算法,如卷积神经网络、LSTM 序列学习、Q-Learning、深度学习等算法,都是机器学习的算法。第三层为重要的技术方向和问题,如计算机视觉,语音工程,自然语言处理等。还有另外的一些类似决策系统,像 reinforcement learning(编辑注:增强学习),或像一些大数据分析的统计系统,这些都能在机器学习算法上产生。第四层为具体的技术,如图像识别、语音识别、机器翻译等等。最顶端为行业的解决方案,如人工智能在金融、医疗、互联网、交通和游戏等上的应用,这是我们所关心它能带来的价值。


人工智能的过去、现在和未来_第5张图片


值得一提的是机器学习同深度学习之间还是有所区别的,机器学习是指计算机的算法能够像人一样,从数据中找到信息,从而学习一些规律。虽然深度学习是机器学习的一种,但深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。


机器学习有三类,第一类是无监督学习,指的是从信息出发自动寻找规律,并将其分成各种类别,有时也称"聚类问题"。第二类是监督学习,监督学习指的是给历史一个标签,运用模型预测结果。如有一个水果,我们根据水果的形状和颜色去判断到底是香蕉还是苹果,这就是一个监督学习的例子。最后一类为强化学习,是指可以用来支持人们去做决策和规划的一个学习方式,它是对人的一些动作、行为产生奖励的回馈机制,通过这个回馈机制促进学习,这与人类的学习相似,所以强化学习是目前研究的重要方向之一。


人工智能的过去、现在和未来_第6张图片


再则,AI 有哪些应用场景?


人工智能的应用场景主要有以下几个方面:


在计算机视觉上,2000 年左右,人们开始用机器学习,用人工特征来做比较好的计算机视觉系统。如车牌识别、安防、人脸等技术。而深度学习则逐渐运用机器代替人工来学习特征,扩大了其应用场景,如无人车、电商等领域。


人工智能的过去、现在和未来_第7张图片


在语音技术上,2010 年后,深度学习的广泛应用使语音识别的准确率大幅提升,像 Siri、Voice Search 和 Echo 等,可以实现不同语言间的交流,从语音中说一段话,随之将其翻译为另一种文字;再如智能助手,你可以对手机说一段话,它能帮助你完成一些任务。与图像相比,自然语言更难、更复杂,不仅需要认知,还需要理解。


人工智能的过去、现在和未来_第8张图片


在自然语言处理上,目前一个比较重大的突破是机器翻译,这大大提高了原来的机器翻译水平,举个例子,Google 的 Translation 系统,是人工智能的一个标杆性的事件。2010 年左右, IBM 的"Watson"系统在一档综艺节目上,和人类冠军进行自然语言的问答并获胜,代表了计算机能力的显著提高。


人工智能的过去、现在和未来_第9张图片


在决策系统上,决策系统的发展是随着棋类问题的解决而不断提升,从 80 年代西洋跳棋开始,到 90 年代的国际象棋对弈,机器的胜利都标志了科技的进步,决策系统可以在自动化、量化投资等系统上广泛应用。


人工智能的过去、现在和未来_第10张图片


在大数据应用上,可以通过你之前看到的文章,理解你所喜欢的内容而进行更精准的推荐;分析各个股票的行情,进行量化交易;分析所有的像客户的一些喜好而进行精准的营销等。机器通过一系列的数据进行判别,找出最适合的一些策略而反馈给我们。


人工智能的过去、现在和未来_第11张图片


最后,说一下AI 的未来是怎么样?也就是人工智能达到什么程度?


在计算机视觉上,未来的人工智能应更加注重效果的优化,加强计算机视觉在不同场景、问题上的应用。


在语音场景下,当前的语音识别虽然在特定的场景(安静的环境)下,已经能够得到和人类相似的水平。但在噪音情景下仍有挑战,如原场识别、口语、方言等长尾内容。未来需增强计算能力、提高数据量和提升算法等来解决这个问题。


在自然语言处理中,机器的优势在于拥有更多的记忆能力,但却欠缺语意理解能力,包括对口语不规范的用语识别和认知等。人说话时,是与物理事件学相联系的,比如一个人说电脑,人知道这个电脑意味着什么,或者它是能够干些什么,而在自然语言里,它仅仅将"电脑"作为一个孤立的词,不会去产生类似的联想,自然语言的联想只是通过在文本上和其他所共现的一些词的联想, 并不是物理事件里的联想。所以如果要真的解决自然语言的问题,将来需要去建立从文本到物理事件的一个映射,但目前仍没有很好的解决方法。因此,这是未来着重考虑的一个研究方向。


当下的决策规划系统存在两个问题,第一是不通用,即学习知识的不可迁移性,如用一个方法学了下围棋,不能直接将该方法转移到下象棋中,第二是大量模拟数据。所以它有两个目标,一个是算法的提升,如何解决数据稀少或怎么自动能够产生模拟数据的问题,另一个是自适应能力,当数据产生变化的时候,它能够去适应变化,而不是能力有所下降。所有一系列这些问题,都是下一个五或十年我们希望很快解决的。


人工智能的过去、现在和未来_第12张图片


未来,我们需要去探讨:


(1)创造力,对于创造力目前有一定的方法慢慢研究,从而使机器开始具有人的一些创造力。但它的通用性受限,特别是对物理事件的理解,只有把这些问题解决了,才有可能造出像人一样的机器人,成为人的意义上的智能。


(2)学科交叉融合,未来需要探索更多的算法和交叉科学上等等的一些融合。所以人工智能在下一个阶段既有非常广阔的应用前景,也有很多挑战。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

你可能感兴趣的:(人工智能的过去、现在和未来)