- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- K-means 算法核心原理
code 旭
AI人工智能学习算法kmeans机器学习
一、K-means算法核心原理1.算法目标将n个样本划分到k个簇中,使得每个样本到所属簇中心的距离平方和最小。2.数学公式目标函数(SSE,簇内平方误差):J=∑i=1k∑x∈Ci∥x−μi∥2J=\sum_{i=1}^k\sum_{x\inC_i}\|x-\mu_i\|^2J=i=1∑kx∈Ci∑∥x−μi∥2其中:CiC_iCi表示第iii个簇μi\mu_iμi表示第iii个簇的质心二、算法步
- 【二分算法】-- 三种二分模板总结
雨雨雨雨点子
算法算法java开发语言leetcode
文章目录1.特点2.学习中的侧重点2.1算法原理2.2模板2.2.1朴素二分模板(easy-->有局限)2.2.2查找左边界的二分模板2.2.3查找右边界的二分模板1.特点二分算法是最恶心,细节最多,最容易写出死循环的算法====但是,一旦掌握了之后,二分算法就是最简单的算法。其实并不是一定要二分,三分,四分也都可以,但是根据概率学中的求期望数学中可知,二分是效率最高的。如果是三分的话,我们就像是
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 【C常用的标准库函数】
niuTaylor
c语言算法开发语言
以下是C语言在面试和工程中常用的标准库函数的全面总结,按头文件分类,涵盖输入输出、字符串处理、内存管理、数学计算、时间处理等核心内容:一、输入输出(stdio.h)文件操作FILE*fopen(constchar*path,constchar*mode)功能:打开文件。模式:"r"(读)、"w"(写)、"a"(追加)、"rb"(二进制读)等。示例:FILE*fp=fopen("data.txt",
- 递推算法
aab__
算法
递推算法递推法的概念递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- 零基础必看!CCF-GESP Python一级考点全解析:运算符这样学就对了
奕澄羽邦
python开发语言
第一章编程世界的基础工具:运算符三剑客在Python编程语言中,运算符如同魔法咒语般神奇。对于CCF-GESPPython一级考生而言,正确掌握比较运算符、算术运算符和逻辑运算符这三大基础工具,就相当于打开了数字世界的大门。这三个运算符家族共同构成了程序逻辑的核心骨架,其灵活组合能实现从简单计算到复杂判断的多样功能。1.1运算符分类图谱算术运算符:负责数字间的数学运算(+-*/%)比较运算符:用于
- 新导则下的防洪评价报告编制方法及洪水建模实践技术
吹翻书页的风
水文水利地质地下水环境科学arcgis防洪评价报告编制HEC-RAS软件二维水动力模型计算
目录1、《防洪评价报告编制导则解读河道管理范围内建设项目编制导则》(SL/T808-2021)解读2、防洪评价相关制度与解析3、防洪评价地形获取及常用计算4、HEC-RAS软件原理及特点5、HEC-RAS地形导入6、一维数学模型计算7、基于数学模型软件的一维构筑物的水动力模型计算及本章内容在报告中编写方法8、数值模型软件概述及数据基础处理9、基于数学模型软件的二维水动力模型计算析及结果输出及评价章
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- unity3d————Mathf.Lerp() 函数详解
无敌最俊朗@
Unity四部曲之基础篇unityc#学习开发语言游戏引擎
Mathf.Lerp()是Unity中的一个非常有用的数学函数。它的名字来自于“LinearInterpolation”的缩写,意思是“线性插值”。想象一下,你有两个点,一个点叫A,另一个点叫B。现在,你想在A和B之间找到一个新的点,这个点不是随便找的,而是根据一定的比例来确定的。这个比例我们称之为t,t的范围是从0到1。当t=0时,新点就是A点。当t=1时,新点就是B点。当t在0和1之间时,新点
- python贪心算法几个经典例子_贪心算法经典例子
weixin_39637979
一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。贪心算法的基本思路如下:1.建立数学模型来描述问题。2.把求解的问题分成若干个子问题。3.对每个子问题求解,得到每个子问题的局
- python贪心算法几个经典例子_贪心算法及几个经典例子
weixin_39786850
一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。贪心算法的基本思路如下:1.建立数学模型来描述问题。2.把求解的问题分成若干个子问题。3.对每个子问题求解,得到每个子问题的局
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- 【Latex】latex公式手册||积分公式表示||极限表达||矩阵的各种表达
zjoy_2233
效率技巧栏矩阵线性代数Latex数学高等数学学习python
为了能够更好地写数学讲义【费曼学习法,故学习Latex的记录】文章目录如何插入公式基础格式:基础符号上标理解:“^”下标:“_”根式分式①简单分式②多层分式多层分式的第二种写法(斜着的除法写法):函数表达对数绝对值积分不定积分定积分多重积分极限①一般极限②左右极限复杂极限练习求和和求积①求和②求积矩阵表示①无括号矩阵②圆括号矩阵③中括号矩阵④大括号⑤单竖线⑥双竖线分段函数(分类讨论需要)集合语言关
- ChatGPT o1与GPT-4o、Claude 3.5 Sonnet和Gemini 1.5 Pro的比较
开发者每周简报
chatgpt人工智能gpt
全新的ChatGPTo1模型(代号“Strawberry”)是OpenAI的最新进展,专注于以前的AI模型难以应对的领域:高层次推理、数学和复杂编程。OpenAI设计o1模型以花费更多时间思考问题,使其在需要逐层推理的任务中提高准确性。本文深入介绍了o1的特性、现实中的应用以及它与顶级竞争对手GPT-4o、Gemini1.5Pro和Claude3.5Sonnet的比较。什么是OpenAIo1模型?
- 数学建模与优化算法在确定X和Y值时,如何处理实验数据的不确定性?
学术乙方
油纸绝缘算法经验分享
在数学建模与优化算法中处理实验数据的不确定性以确定油纸绝缘系统中的X和Y值,可以参考以下方法和步骤:建立数学模型油纸绝缘系统的几何结构可以用X-Y模型来描述,其中X表示挡板厚度与总厚度的比值,Y表示间隔器宽度与总宽度的比值。这些参数直接影响油纸绝缘的介电特性。通过实验数据(如介电谱曲线)和理论模型,可以建立数学方程来描述X和Y对介电特性的影响。引入不确定性建模实验数据通常存在测量误差、环境变化等因
- 【初探数据结构】带环链表:原理、判断与数学证明
我想吃余
数据结构篇数据结构链表
欢迎讨论:在阅读过程中有任何疑问,欢迎在评论区留言,我们一起交流学习!点赞、收藏与分享:如果你觉得这篇文章对你有帮助,记得点赞、收藏,并分享给更多对数据结构感兴趣的朋友文章目录一、何为带环链表1.1带环链表的定义1.2典型示例二、环路检测:Floyd判圈算法2.1快慢指针实现2.2算法特性三、数学证明与深度解析3.1步长差为1的必然性证明(快2步/慢1步)3.2广义步长分析(快n步/慢1步)四、环
- Linux系统之bc命令详解
门前灯
linux运维服务器bcbc命令详解
bc(BasicCalculator)是一个在Unix和类Unix操作系统中提供的任意精度计算语言。它支持基本的数学运算,包括加、减、乘、除以及指数运算,并且能够处理浮点数和整数。此外,bc还支持编程特性,如变量定义、条件判断、循环结构等,使其不仅仅是一个计算器,更是一个完整的编程环境。基本语法启动bc交互模式:直接在终端中输入bc即可进入交互模式,在该模式下可以实时输入并计算表达式。bc非交互模
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- QwQ-32B通用能力测评的详细分析
大势下的牛马
搭建本地gptQwQQwQ-32BRAG人工智能知识库
QwQ-32B通用能力测评的详细分析一、测评框架与核心基准测试QwQ-32B的通用能力测评围绕三大核心评测体系展开,覆盖逻辑推理、多轮对话、复杂指令遵循、工具调用等综合能力:LiveBench(“最难LLMs评测榜”)设计方:Meta首席科学家YannLeCun团队主导构建任务类型:数学证明:需完成包含多步推导的几何/代数证明题(如"证明存在无限多个素数")逻辑谜题:例如"三个箱子标签全错,如何通
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- Java 常用命令总结(完)
羊不白丶
java开发语言后端
更新了版本,请移步Java常用命令总结持续更新中!!!目录基础输入保留几位小数Random数组SystemArraysHashMapHashSetStringStringBuilderArrayListDeque栈Queue队列PriorityQueue优先队列常用数学算法&&结论结论算法ScannerIntegerIterator迭代器MathComparator&&Comparable的使用其
- Deepseek-R1性能指标
ZHOU_CAMP
agent论文解读人工智能agent
目录Figure基准测试任务1.AIME2024(Pass@1)2.Codeforces(Percentile)3.GPQADiamond(Pass@1)4.MATH-500(Pass@1)5.MMLU(Pass@1)6.SWE-benchVerified(Resolved)Figure基准测试任务1.AIME2024(Pass@1)主要衡量模型在数学竞赛题目上的解题能力。DeepSeek-R1的
- Process-based Self-Rewarding Language Models 论文简介
ZHOU_CAMP
deepseekrelated论文人工智能深度学习
基于过程的自奖励语言模型:LLM优化的新范式引言大型语言模型(LLM)在多种任务中展现出了强大的能力,尤其是在使用人工标注的偏好数据进行训练时。然而,传统的自奖励范式在数学推理任务中存在局限性,甚至可能在迭代训练中导致模型性能下降。为了解决这些问题,论文《Process-basedSelf-RewardingLanguageModels》提出了一种新的框架,该框架结合了长链推理、逐步LLM评判(L
- 信号处理应用:控制系统中的信号处理_(2).控制系统的数学建模
kkchenkx
信号处理技术仿真模拟数学建模信号处理
控制系统的数学建模在控制系统的设计和分析中,数学建模是基础且至关重要的步骤。数学模型可以描述系统的动态行为,帮助我们理解和预测系统的响应。本节将详细介绍控制系统的数学建模方法,包括传递函数、状态空间模型和频域分析。1.传递函数传递函数是一种常用的数学模型,用于描述线性时不变(LTI)系统的输入输出关系。传递函数是在复频域(s域)中表示的,可以方便地进行系统的分析和设计。1.1定义传递函数定义为系统
- 基于PyTorch的深度学习5——神经网络工具箱
Wis4e
深度学习pytorch神经网络
可以学习如下内容:•介绍神经网络核心组件。•如何构建一个神经网络。•详细介绍如何构建一个神经网络。•如何使用nn模块中Module及functional。•如何选择优化器。•动态修改学习率参数。5.1核心组件神经网络核心组件不多,把这些组件确定后,这个神经网络基本就确定了。这些核心组件包括:1)层:神经网络的基本结构,将输入张量转换为输出张量。2)模型:层构成的网络。3)损失函数:参数学习的目标函
- 【Transformer优化】Transformer的局限在哪?
T-I-M
transformer深度学习人工智能
自2017年Transformer横空出世以来,它几乎重写了自然语言处理的规则。但当我们在享受其惊人的并行计算能力和表征能力时,是否真正理解了它的局限性?本文将深入探讨在复杂度之外被忽视的五大核心缺陷,并试图在数学维度揭示其本质。一、全局注意力的"诅咒":从**O(n²)**到O(n³)的计算困境自注意力机制的数学表达式:Attention(Q,K,V)=softmax(QK⊤dk)V\text{
- 核函数及其常见类型
Shockang
机器学习数学通关指南机器学习人工智能数学线性代数概率统计
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文核心概念核函数(KernelFunction)是机器学习中处理非线性可分数据的关键工具。它的核心思想是隐式映射:通过将数据从原始低维空间映射到高维空间,使得在高维空间中线性可分,从而无需显式计算高维映射,仅需在低维空间高效计算
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s