- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- 使用 Selenium 控制现有 Edge 窗口以规避爬虫检测
秋叶原の黑猫
数据库
在网络爬虫开发中,网站的防爬机制常常会检测自动化工具(如Selenium)启动的浏览器实例。为了绕过这种检测,一种有效的方法是利用Selenium连接到手动打开的现有浏览器窗口,而不是每次都启动一个新的实例。本文将详细介绍如何使用Selenium控制现有的MicrosoftEdge浏览器窗口,并结合代码示例展示实现过程。1.背景介绍:为什么需要控制现有窗口?传统的Selenium脚本会通过WebD
- 业务逻辑漏洞
波兰的蓝
web安全
一、业务逻辑漏洞概述1.定义业务逻辑漏洞是指由于程序在设计业务流程时未充分考虑安全边界或异常场景,导致攻击者可通过非技术性手段(如参数篡改、流程跳过、逻辑滥用)实现非法操作。2.特点隐蔽性强:不依赖代码漏洞,难以被自动化工具检测。危害性高:可能导致资金损失、数据泄露、权限提升等。依赖业务理解:需深入分析目标业务流程的设计逻辑。二、常见业务逻辑漏洞类型1.权限控制漏洞平行越权场景:用户A通过篡改ID
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 如何用Python和Selenium实现表单的自动填充与提交?
字节王德发
pythonpythonselenium开发语言
在今天的数字化时代,自动化工具可以极大地提高工作效率。很多人可能会觉得填表单是个繁琐的任务,不过你知道吗?用Python和Selenium可以轻松解决这一问题!本文将带你走进如何利用这两个强大的工具,实现表单的自动填充和提交,让你省去不少时间。什么是Selenium?Selenium是一个广泛使用的自动化测试工具,它能够模拟用户在浏览器中的操作。通过它,我们可以自动化执行诸如点击按钮、输入文本、选
- 基于 Python 将 PDF 转 Markdown 并拆解为 JSON,支持自定义标题处理
drebander
pythonpdfjson
在日常工作中,我们经常需要将PDF文件转换为可编辑、可结构化的数据格式,比如Markdown和JSON。但实际操作中,自动化工具往往会出现标题识别不准确的问题,尤其是PDF转换过程中,缺乏明确的标题标识。这篇文章将教你如何使用Python将PDF转换为Markdown,并通过自定义规则精准识别标题,最终将内容按标题结构拆解为JSON,方便后续快速检索与使用。1.实现目标将PDF文件转换为Markd
- 【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?
985小水博一枚呀
深度学习学习笔记迁移学习人工智能机器学习域适应
【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?文章目录【迁移学习入门之域适应的背景、理论与方法】进一步理解迁移学习啦?1.背景介绍2.理论基础2.1分布差异(DomainShift)2.2迁移学习理论(TransferLearningTheory)2.3领域不变特征(Domain-invariantFeatures)
- 105页ppt解读华为供应链的变革模式和方法
智慧化智能化数字化方案
华为学习专栏华为华为供应链供应链数字化智慧供应链
华为供应链的变革与发展经历了从B2B到B2C的转型,通过强化产业链协同、打造核心能力备胎计划等方式应对“断供”挑战。在数字化转型的推动下,华为供应链规模不断扩大,组织架构也经历了螺旋式上升的发展。从供应链整合到端到端打通,再到保持稳健增长,华为不断优化供应链管理体系,提升产品竞争力。华为供应链的理论基础源于二战时期的美军后勤管理,经过不断发展,现已成为集成供应链(ISC)管理的重要组成部分。进入2
- Browser Use开启AI辅助网页操作新时代
CodeJourney.
python人工智能算法数据库
在当今数字化时代,人们的工作和生活与互联网紧密相连。每天,我们都要花费大量时间在各类网站之间穿梭,进行诸如填写表单、查询信息、比价等重复性操作。这些工作不仅耗费精力,还容易因疲劳而出错,严重影响了工作效率。而现有的自动化工具,要么需要掌握专业的编程知识才能使用,要么在功能上存在局限性,让普通技术用户望而却步。不过,随着人工智能技术的飞速发展,一款名为BrowserUse的开源项目应运而生,为我们带
- 代码随想录第五十五天| 并查集理论基础 寻找存在的路径
kill bert
代码随想录算法训练营算法数据结构
并查集理论基础背景并查集是一种数据结构,主要用于解决元素的连通性问题。简单来说,当我们需要判断多个元素是否属于同一个集合时,并查集可以高效地完成这一任务。它支持两种基本操作:将两个元素合并到同一个集合中,以及判断两个元素是否属于同一个集合。原理讲解并查集的核心思想是通过一个数组来记录每个元素的父节点,从而形成一种树形结构。每个集合用一棵树来表示,树的根节点即为该集合的代表元素。具体来说:初始化:每
- 问题链的拓扑学重构
由数入道
AI辅助教学拓扑学重构
问题链拓扑学重构目录概念框架与理论基础综合知识图谱(Mermaid图示)核心构成要素与参数解析逻辑链条方法论详解与数学模型4.1根源溯源——分形式5Whys与RCA4.2网络建模——系统动力学与贝叶斯网络4.3维度跃迁——第一性原理与跨模态映射4.4时空折叠——历史回溯与未来推演四维操控模型——知识精髓工具、案例及实践方法注意事项、终止机制与系统自适应未来拓展与研究方向总结与战略价值1.概念框架与
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- PyAutoGUI:自动化你的桌面操作
技术流 Gavin
自动化运维
在使用计算机时,重复性的手动操作常常耗费时间和精力。为了解决这个问题,自动化工具应运而生。PyAutoGUI是一个强大的Python库,可以模拟人类在使用鼠标和键盘时的操作。什么是PyAutoGUI?PyAutoGUI是一个跨平台的Python模块,允许你通过代码控制鼠标和键盘。它在Windows、macOS和Linux上均可用,适合作为自动化脚本、测试自动化、游戏机器人等应用的基础。主要功能Py
- 【go】隐式转换限制
还没入门的大菜狗
golang
只有方法中存在隐式类型转换,函数中不存在。这个最开始的时候让我有些混乱,但是思考过设计原因后,我逐渐明白了。核心提示词1:我们先从为什么要支持方法隐式转换开始说起:核心提示词2:但是go语言的设计哲学又是显式大于隐式,那么为什么要设计成方法支持隐式转换呢?核心提示词3:为什么函数调用时,使用隐式转换,潜在混淆会大于便利?感慨一下:真的需要一个好的提问。方法隐式转换的理论基础方法调用允许隐式转换是因
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- Python进行DevOps实践
黑夜照亮前行的路
pythondevops开发语言
使用Python进行DevOps实践可以涉及多个方面,从自动化部署、配置管理、监控到日志分析等等。下面是一些具体的方法和实践,展示如何使用Python在DevOps环境中进行工作:1.自动化部署使用Python编写自动化部署脚本,可以极大地提高部署效率。例如,可以使用fabric或paramiko等库来远程执行命令,或者使用Ansible这样的自动化工具,它本身使用Python编写,并提供了丰富的
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 2024年12月CCF-GESP编程能力等级认证C++编程四级真题解析
前网易架构师-高司机
c++开发语言CCF-GESP
四级真题的难度:一、总体难度评价CCF-GESP编程能力等级认证C++四级真题的难度通常被认为相对较高。它不仅要求考生具备扎实的C++编程基础,还需要考生掌握一定的算法和数据结构知识,以及良好的问题解决能力。二、具体难度分析理论知识考察:单选题和判断题中,会涉及C++语言的理论基础知识,如数组的存储原理、函数的各种传参方式、指针、引用等。这些题目要求考生对C++语言有深入的理解。编程技能考察
- Manus(一种AI代理或自动化工具)与DeepSeek(一种强大的语言模型或AI能力)结合使用任务自动化和智能决策
zzlyx99
人工智能自动化语言模型
一、Manus与DeepSeek差异十分好奇DeepSeek和Manus究竟谁更厉害些,DeepSeek是知识型大脑,Manus则是全能型执行者。即DeepSeek专注于语言处理、知识整合与专业文本生成。其核心优势在于海量参数支持的深度学习和知识推理能力,例如撰写论文、润色法律合同、解答专业问题等。Manus则更强调从规划到交付的闭环能力。它通过工具链调用(如浏览器、代码编辑器)自主执行复杂任务,
- 用 Verilog 实现 0 到 18 计数器:从原理到实践的全解析
君临天下.鑫
modelsim波形仿真verilogfpga开发课程设计经验分享笔记编辑器
在数字电路设计中,计数器是极为重要的基础部件,广泛应用于各类数字系统。本次实验聚焦于设计一个从0到18计数的计数器,通过深入探索计数器的工作原理、利用组合逻辑控制计数范围,进一步加深对数字电路和Verilog语言的理解与应用。一、实验目的理解计数器通用原理:全面掌握计数器的基本工作原理,包括计数的方式、状态的转换以及与外部信号的交互等,为设计特定功能的计数器奠定理论基础。运用组合逻辑控制计数范围:
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- Crawl4AI 与 BrowserUseTool 的详细对比
燃灯工作室
Lmplement人工智能学习数学建模
以下是Crawl4AI与BrowserUseTool的详细对比,涵盖功能、技术实现、适用场景等核心维度:1.核心定位对比工具Crawl4AIBrowserUseTool类型专为AI优化的网络爬虫框架浏览器自动化工具(模拟人类操作浏览器)核心目标高效获取结构化数据供AI训练/推理处理需要浏览器交互的动态网页任务典型应用大规模数据抓取、知识库构建登录受限网站、抓取JavaScript渲染内容2.技术实
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 智能 Uber 发票 PDF 合并工具
机器懒得学习
pdfpython开发语言
在现代商务出行中,尤其是在跨国出差中,处理和整合大量Uber发票已成为一项不小的挑战。手动整理和合并这些发票不仅耗时,还容易出错。作为开发者,为什么不开发一个自动化工具,将这些任务交给代码来完成呢?在这篇博客中,我将带你一步步构建一个结合PyQt5、pdfplumber和PyPDF2的智能Uber发票合并工具,不仅能自动提取数据,还能动态显示进度条,给用户带来极佳的使用体验。项目亮点:PyQt5G
- 系统架构设计师【第5章】: 软件工程基础知识 (核心总结)
数据知道
系统架构软件工程软考高级系统架构设计师软件工程基础
文章目录5.1软件工程5.1.1软件工程定义5.1.2软件过程模型5.1.3敏捷模型5.1.4统一过程模型(RUP)5.1.5软件能力成熟度模型5.2需求工程5.2.1需求获取5.2.2需求变更5.2.3需求追踪5.3系统分析与设计5.3.1结构化方法5.3.2面向对象方法5.4软件测试5.4.1测试方法5.4.2测试阶段5.5净室软件工程5.5.1理论基础5.5.2技术手段5.5.3应用与缺点5
- HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发引言在音视频处理领域,实时性和性能是关键。随着HarmonyNext生态系统的不断发展,开发者可以利用ArkTS语言构建高性能的音视频处理应用。本文将深入探讨如何利用ArkTS开发一个音视频处理应用,重点介绍音频处理、视频编解码以及实时流媒体传输的实现。我们将从理论基础出发,逐步构建一个完整的应用,并通过优化技巧提升性能。1.音视
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- 事件驱动架构模型_模型驱动架构简介
cusi77914
大数据编程语言python机器学习人工智能
最近几个月,许多组织已开始将注意力集中在模型驱动的体系结构(MDA)1上,作为应用程序设计和实现的一种方法。由于几个原因,这是一个非常积极的发展。MDA鼓励在软件开发过程中有效使用系统模型,并在创建系统系列时支持重用最佳实践。根据对象管理组(OMG)的定义,MDA是一种组织和管理由自动化工具和服务支持的企业体系结构的方法,用于定义模型和促进不同模型类型之间的转换。尽管OMG定义的用于创建和发展企业
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D