- 鸿蒙HarmonyOS 5.0开发:应用程序包-HAP
炫酷盖茨猫先生
鸿蒙5.0开发ArkTS组件ArkUI框架harmonyos华为前端androidArkUIArkTS鸿蒙系统
往期鸿蒙全套实战文章必看:(文中附带鸿蒙全栈学习资料)鸿蒙开发核心知识点,看这篇文章就够了最新版!鸿蒙HarmonyOSNext应用开发实战学习路线鸿蒙HarmonyOSNEXT开发技术最全学习路线指南鸿蒙应用开发实战项目,看这一篇文章就够了(部分项目附源码)HAPHAP(HarmonyAbilityPackage)是应用安装和运行的基本单元。HAP包是由代码、资源、第三方库、配置文件等打包生成的
- 华为余承东“剧透”新形态手机;自DeepSeek发布以来,英伟达市值已蒸发4200亿美元;Java 24正式发布 | 极客头条
极客日报
华为智能手机java
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|郑丽媛出品|CSDN(ID:CSDNnews)一分钟速览新闻点!华为余承东“揭秘”新形态手机:不是卷轴屏/伸缩屏,但男生女生都会喜欢腾讯去年营收增长8%,马化腾:重组AI团队,增加AI相关的资本开支金山办公:2024年WPSOffice全球月度活跃设备数达6.32亿,
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机科学专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计计算机网络毕设选题毕设系统毕设题目计算机科学专业
文章目录前言最新毕设选题(建议收藏起来)本科计算机科学专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能设计
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- FastAPI测试策略:参数解析单元测试
qcidyu
文章归档异常传播验证依赖注入测试请求模拟技术测试覆盖率优化Pydantic验证测试单元测试策略参数解析测试
扫描二维码关注或者微信搜一搜:编程智域前端至全栈交流与成长探索数千个预构建的AI应用,开启你的下一个伟大创意第一章:核心测试方法论1.1三层测试体系架构#第一层:模型级测试deftest_user_model_validation():withpytest.raises(ValidationError):User(age=-5)#第二层:依赖项测试deftest_auth_dependency()
- java中如何根据已有word文件快速生成目录和页码?
bug菌¹
全栈Bug调优(实战版)javawordpython生成目录生成页码文件操作
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案优化基于Docx4j的TOC生成性能问题及日志警告解决方案**1.性能优化****1.1避免使用FOP渲染获取页码****1.2使用更高效的文档
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- 神经网络之参数初始化
硬水果糖
人工智能神经网络人工智能深度学习
引言:参数初始化是训练深度神经网络的一个关键步骤,目的是给网络中权重(weights)和偏置(biases)赋予初始值。合适的参数初始化方法有助于提高训练速度、避免梯度消失/爆炸问题,并且加速网络的收敛。一、参数初始化目的避免梯度消失和梯度爆炸:在深度神经网络中,参数初始化对梯度流动非常重要。如果初始权重值太大或太小,可能导致梯度爆炸或梯度消失,从而增加网络的训练难度。加速收敛:良好的初始化可以帮
- 神经网络基础之正则化
硬水果糖
人工智能神经网络人工智能机器学习
引言:正则化(Regularization)是机器学习中一种用于防止模型过拟合技术。核心思想是通过在模型损失函数中添加一个惩罚项(PenaltyTerm),对模型的复杂度进行约束,从而提升模型在新数据上的泛化能力。一、正则化目的防止过拟合:当模型过于复杂(例如神经网络层数过多、参数过多)时,容易在训练数据上“记忆”噪声或细节,导致在测试数据上表现差。简化模型:正则化通过限制模型参数的大小或数量,迫
- TDE透明加密技术:免改造实现华为云ECS中数据库和文件加密存储
安 当 加 密
华为云数据库
在数字经济与云计算深度融合的今天,华为云ECS(弹性云服务器)已成为企业数字化转型的核心载体,承载着数据库、文件存储、AI训练等关键业务。然而,云上数据安全形势日益严峻:2024年全球云环境勒索攻击同比激增210%,密钥泄露、权限失控、合规失效成为企业上云的三大痛点。作为国内数据安全领域的领军者,上海安当推出的TDE透明加密技术,以“存储层无感加密、密钥全生命周期管理、动态防勒索”为核心,为华为云
- 一键秒连WiFi智能设备,uni-app全栈式物联开发指南。
豆豆(前端开发+ui设计)
前端
如何使用uni-app框架实现通过WiFi连接设备并进行命令交互的硬件开发。为了方便理解和实践,我们将提供相应的源代码示例,帮助开发者快速上手。1.硬件准备在开始之前,请确保你已经准备好以下硬件设备:支持WiFi连接的设备:如ESP8266、ESP32等。控制端设备:手机或电脑,安装有支持uni-app开发的开发环境(如HBuilderX)。网络环境:确保设备和控制端在同一个局域网内。2.uni-
- 谈高考真题的使用(数学)
weixin_34116110
python测试
2019独角兽企业重金招聘Python工程师标准>>>在高三数学复习中,大家常说“以本为本,以纲为纲,高考真题当主粮”,就是以教材内容为根本,以“考试大纲”为准绳,以高考真题的训练为主线;抓住了本,把握了纲,训练有的放矢,我们的复习就会事半功倍。高考数学试题难度相对稳定,考查形式的变化却是异彩纷呈,而变化中又有着一定的规律:全国试题与各省市试题的考试要求基本一致;题型除上海和江苏外,全国和其他各省
- 利用 HAI 平台进行 DeepSeek 模型训练的详细指南
摘要本文旨在为非专业用户提供在HAI平台上进行DeepSeek模型训练的详细步骤。从创建项目、上传数据集、配置训练参数到启动训练任务并监控训练过程,本文将逐步指导用户完成整个流程。此外,本文还包含可运行的示例代码模块和相关章节配图,以帮助用户更好地理解和操作。引言HAI(HyperAI)平台是一个强大的AI模型训练平台,但对于非专业用户来说,其复杂性可能会成为使用的障碍。本文将详细介绍如何在HAI
- policy_does_not_allow_file_overwrite
前端uniapp云存储
uniapp云开发阿里云上传文件uniapp的出现,让前端人员和后端人员实现了“全栈”的小梦想,当然,真正跨端开发的时候,还是会遇到不少的问题,比如今天我们的主角,uniCloud.uploadFile,一般来说,这个api文件名动态生成,云端返回文件存储的链接即可,但是,假如我们的产品是针对用户存储的,即用户的头像、私有文件、图片等具有唯一性,要单独开个目录存放的时候,同样的文件名上传会存在无法
- Ai时代初期全球不同纬度的层级辐射现象
龙胥伯
人工智能
基于最新研究成果与行业动态,AI时代的"层级辐射"现象可被科学解构为以下六大维度,结合技术演进、产业实践和社会影响进行系统性分析:一、技术能力的层级跃迁模型效率革命DeepSeek研发的R1-Zero模型通过动态架构设计,将样本利用率提升40%以上,训练周期大幅缩短。这种技术突破推动AI从实验室走向规模化应用,在智能制造、生物医药等领域催生新生态。大语言模型的训练方式(预训练→多任务学习→强化学习
- 1.1PaddleTS_环境配置:一个易用的深度时序建模的Python库
pythonQA
pythonpaddlepaddle
PaddleTS是一个易用的深度时序建模的Python库,它基于飞桨深度学习框架PaddlePaddle,专注业界领先的深度模型,旨在为领域专家和行业用户提供可扩展的时序建模能力和便捷易用的用户体验。PaddleTS的主要特性包括:设计统一数据结构,实现对多样化时序数据的表达,支持单目标与多目标变量,支持多类型协变量封装基础模型功能,如数据加载、回调设置、损失函数、训练过程控制等公共方法,帮助开发
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- vscode连接远程服务器docker里的容器--使用remote ssh
欢仔要学习
python学习ubuntu
背景介绍:因为工作的原因,图像相关,模型训练,需要在服务器上面搞,同时,服务器上面的环境配置,全部使用的是docker创建容器的方式。但是呢,之前没有配置好服务器与本机的交互环境,每次更改代码,要上传,下载,很不方便,同时图片也没办法可视化。很不友好。于是就想要使用vscode来连接远程服务器docker;因为docker创建的那个容器相当于是一台ubuntu主机,配置好端口,然后我们从外面去连接
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- MMScan数据集:首个最大的多模态3D场景数据集,包含层次化的语言标注
数据集
2024-10-24,由上海人工智能实验室联合多所高校创建了MMScan,这是迄今为止最大的多模态3D场景数据集,包含了层次化的语言标注。数据集的建立,不仅推动了3D场景理解的研究进展,还为训练和评估多模态3D感知模型提供了宝贵的资源。一、研究背景:随着大型语言模型(LLMs)的兴起和与其他数据模态的融合,多模态3D感知因其与物理世界的连接而受到越来越多的关注,并取得了快速进展。然而,现有的数据集
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 数据库 + Spring Boot + Vue 全栈交互逻辑详解
代码CC
Java项目-开发springbootvue.jsmysql数据库开发语言
目录整体架构概述技术栈说明数据库设计规范SpringBoot后端架构Vue前端架构完整交互流程关键技术实现细节安全与性能优化异常处理机制整体架构概述graphTDA[Vue前端]-->|HTTP请求|B(SpringBoot后端)B-->|JDBC/ORM|C[(数据库)]C-->|返回数据|BB-->|JSON响应|AA-->|状态管理|D[VuexStore]B-->|缓存|E[Redis]B
- Java 大视界 -- Java 大数据在智能体育赛事直播数据分析与观众互动优化中的应用(142)
青云交
大数据新视界Java大视界java大数据体育赛事直播数据分析观众互动数据采集个性化推荐
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR