Android view绘制流程

我们先来看一张图:
Android view绘制流程_第1张图片
这张图显示了一个Activity中View的结构,途中id为content的内容就是整个View树的结构,所以对每个具体View对象的操作,其实就是个递归的实现。
View的绘制经历三个过程:Measure、Layout、Draw。整个View树的绘图流程是在ViewRoot.java类的performTraversals()函数展开的,该函数做的执行过程可简单概况为根据之前设置的状态,判断是否需要重新计算视图大小(measure)、是否重新需要安置视图的位置(layout)、以及是否需要重绘(draw)。

performTraversals函数

private void performTraversals() {
        ......
        //最外层的根视图的widthMeasureSpec和heightMeasureSpec由来
        //lp.width和lp.height在创建ViewGroup实例时等于MATCH_PARENT
        int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
        int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
        ......
        mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        ......
        mView.layout(0, 0, mView.getMeasuredWidth(), mView.getMeasuredHeight());
        ......
        mView.draw(canvas);
        ......
    }

注意getRootMeasureSpec方法中传入的参数,其中lp.width和lp.height在创建ViewGroup实例的时候就被赋值了,它们都等于MATCH_PARENT
getRootMeasureSpec函数

/**
     * Figures out the measure spec for the root view in a window based on it's
     * layout params.
     *
     * @param windowSize
     *            The available width or height of the window
     *
     * @param rootDimension
     *            The layout params for one dimension (width or height) of the
     *            window.
     *
     * @return The measure spec to use to measure the root view.
     */
    private static int getRootMeasureSpec(int windowSize, int rootDimension) {
        int measureSpec;
        switch (rootDimension) {

        case ViewGroup.LayoutParams.MATCH_PARENT:
            // Window can't resize. Force root view to be windowSize.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
            break;
        ......
        }
        return measureSpec;
    }

这里使用了MeasureSpec.makeMeasureSpec()方法来组装一个MeasureSpec,当rootDimension参数等于MATCH_PARENT的时候,MeasureSpec的specMode就等于EXACTLY,当rootDimension等于WRAP_CONTENT的时候,MeasureSpec的specMode就等于AT_MOST。并且MATCH_PARENT和WRAP_CONTENT时的specSize都是等于windowSize的,也就意味着根视图总是会充满全屏的。

1、Measure过程

Measure过程是计算视图大小,View中视图measure过程相关的方法主要有三个:

public final void measure(int widthMeasureSpec, int heightMeasureSpec)  
protected final void setMeasuredDimension(int measuredWidth, int measuredHeight)  
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec)

measure调用onMeasure,onMeasure调用setMeasureDimension,measure,setMeasureDimension是final类型,view的子类不需要重写,onMeasure在view的子类中重写。
onMeasure函数

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {  
    setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),  
            getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));  
}  

重写onMeasure时,要调用setMeasuredDimension或者super.onMeasure来设置自身的mMeasuredWidth和mMeasuredHeight,否则,就会抛出异常.
setMeasuredDimension函数,用来设置view的大小:

protected final void setMeasuredDimension(int measuredWidth, int measuredHeight) {  
    mMeasuredWidth = measuredWidth;  
    mMeasuredHeight = measuredHeight;  
    mPrivateFlags |= MEASURED_DIMENSION_SET;  
}  

再看一下onMeasure的getDefaultSize函数:

public static int getDefaultSize(int size, int measureSpec) {  
    int result = size;  
    int specMode = MeasureSpec.getMode(measureSpec);  
    int specSize = MeasureSpec.getSize(measureSpec);  

    switch (specMode) {  
    case MeasureSpec.UNSPECIFIED:  
        result = size;  
        break;  
    case MeasureSpec.AT_MOST:  
    case MeasureSpec.EXACTLY:  
        result = specSize;  
        break;  
    }  
    return result;  
}  

这里用到了MeasureSpec类:

public static class MeasureSpec {  

    private static final int MODE_SHIFT = 30;  
    private static final int MODE_MASK  = 0x3 << MODE_SHIFT;  
    public static final int UNSPECIFIED = 0 << MODE_SHIFT;  
    public static final int EXACTLY     = 1 << MODE_SHIFT;  
    public static final int AT_MOST     = 2 << MODE_SHIFT;  

    public static int makeMeasureSpec(int size, int mode) {  
        return size + mode;  
    }  

    public static int getMode(int measureSpec) {  
        return (measureSpec & MODE_MASK);  
    }  

    public static int getSize(int measureSpec) {  
        return (measureSpec & ~MODE_MASK);  
    }  
}

MODE_MASK为30为长度的二进制数,前两位标示Mode,后面的标示Size。MeasureSpec有三种模式分别是UNSPECIFIED, EXACTLY和AT_MOST。

  • EXACTLY:在这种模式下,尺寸的值是多少,那么这个组件的长或宽就是多少。比如我们将控件的layout_width或layout_height指定为具体数值时如andorid:layout_width=”50dip”,或者为MATCH_PARENT是,都是控件大小已经确定的情况,都是精确尺寸。
  • AT_MOST:这个也就是父组件,能够给出的最大的空间,当前组件的长或宽最大只能为这么大,当然也可以比这个小。当控件的layout_width或layout_height指定为WRAP_CONTENT时,控件大小一般随着控件的子空间或内容进行变化,此时控件尺寸只要不超过父控件允许的最大尺寸即可。因此,此时的mode是AT_MOST,size给出了父控件允许的最大尺寸。
  • 未指定尺寸,这种情况不多,一般都是父控件是AdapterView,通过measure方法传入的模式。
    widthMeasureSpec和heightMeasureSpec决定了Mode和Size的值,widthMeasureSpec和heightMeasureSpec来自父视图,这两个值都是由父视图经过计算后传递给子视图的,说明父视图会在一定程度上决定子视图的大小。

Measure是一个复杂的过程,因为一个布局中一般都会包含多个子视图,每个视图都需要经历一次measure过程。ViewGroup中定义了一个measureChildren()方法来去测量子视图的大小,如下所示:

protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {  
       final int size = mChildrenCount;  
       final View[] children = mChildren;  
       for (int i = 0; i < size; ++i) {  
           final View child = children[i];  
           if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {  
               measureChild(child, widthMeasureSpec, heightMeasureSpec);  
           }  
       }  
   }  

这里会去遍历当前布局下的所有子视图,然后逐个调用measureChild()方法来测量相应子视图的大小:

protected void measureChild(View child, int parentWidthMeasureSpec,  
           int parentHeightMeasureSpec) {  
       final LayoutParams lp = child.getLayoutParams();  

       final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,  
               mPaddingLeft + mPaddingRight, lp.width);  
       final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,  
               mPaddingTop + mPaddingBottom, lp.height);  

       child.measure(childWidthMeasureSpec, childHeightMeasureSpec);  
   }  

从这里我们可以看到视图的大小是由父视图和子视图共同决定的。子布局里面的android:layout_width和android:layout_height只是期望值,父View大小最终是由DecorView决定。父视图提供尺寸大小的一个能力,子视图最终尺寸与父视图能力、子视图期望的值共同决定

2、Layout过程

measure过程确定视图的大小,layout过程确定视图的位置。layout是从view的layout方法开始的:

public void layout(int l, int t, int r, int b) {  
       int oldL = mLeft;  
       int oldT = mTop;  
       int oldB = mBottom;  
       int oldR = mRight;  
       boolean changed = setFrame(l, t, r, b);  
       if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {  
           onLayout(changed, l, t, r, b);  
           mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;  

           ListenerInfo li = mListenerInfo;  
           if (li != null && li.mOnLayoutChangeListeners != null) {  
               ArrayList listenersCopy =  
                       (ArrayList)li.mOnLayoutChangeListeners.clone();  
               int numListeners = listenersCopy.size();  
               for (int i = 0; i < numListeners; ++i) {  
                   listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);  
               }  
           }  
       }  
       mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;  
   }  

函数中参数l、t、r、b是指view的左、上、右、底的位置,这几个参数是父视图传入的,而根视图中参数是由performTraversals()方法传入的。当ViewRootImpl的performTraversals中measure执行完成以后会接着执行mView.layout:

private void performTraversals() {
    ......
    mView.layout(0, 0, mView.getMeasuredWidth(), mView.getMeasuredHeight());
    ......
}

view中的layout中调用了onLayout方法,在view中onLayout方法是一个空函数,他需要其子类实现。

protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
    }

那我们具体来看一下LinearLayout中的onlayout方法:

public class LinearLayout extends ViewGroup {
    @Override
    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        if (mOrientation == VERTICAL) {
            layoutVertical(l, t, r, b);
        } else {
            layoutHorizontal(l, t, r, b);
        }
    }
}

再具体看下layoutVertical方法:

void layoutVertical() {  
      final int paddingLeft = mPaddingLeft;  

      int childTop;  
      int childLeft;  

      // Where right end of child should go  
      final int width = mRight - mLeft;  
      int childRight = width - mPaddingRight;  

      // Space available for child  
      int childSpace = width - paddingLeft - mPaddingRight;  

      final int count = getVirtualChildCount();  

      final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;  
      final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;  

      switch (majorGravity) {  
         case Gravity.BOTTOM:  
             // mTotalLength contains the padding already  
             childTop = mPaddingTop + mBottom - mTop - mTotalLength;  
             break;  

             // mTotalLength contains the padding already  
         case Gravity.CENTER_VERTICAL:  
             childTop = mPaddingTop + (mBottom - mTop - mTotalLength) / 2;  
             break;  

         case Gravity.TOP:  
         default:  
             childTop = mPaddingTop;  
             break;  
      }  

      for (int i = 0; i < count; i++) {  
          final View child = getVirtualChildAt(i);  
          if (child == null) {  
              childTop += measureNullChild(i);  
          } else if (child.getVisibility() != GONE) {  
              final int childWidth = child.getMeasuredWidth();  
              final int childHeight = child.getMeasuredHeight();  

              final LinearLayout.LayoutParams lp =  
                      (LinearLayout.LayoutParams) child.getLayoutParams();  

              int gravity = lp.gravity;  
              if (gravity < 0) {  
                  gravity = minorGravity;  
              }  
              final int layoutDirection = getLayoutDirection();  
              final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);  
              switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {  
                  case Gravity.CENTER_HORIZONTAL:  
                      childLeft = paddingLeft + ((childSpace - childWidth) / 2)  
                              + lp.leftMargin - lp.rightMargin;  
                      break;  

                  case Gravity.RIGHT:  
                      childLeft = childRight - childWidth - lp.rightMargin;  
                      break;  

                  case Gravity.LEFT:  
                  default:  
                      childLeft = paddingLeft + lp.leftMargin;  
                      break;  
              }  

              if (hasDividerBeforeChildAt(i)) {  
                  childTop += mDividerHeight;  
              }  

              childTop += lp.topMargin;  
              //调用child的layout设置child的位置
              setChildFrame(child, childLeft, childTop + getLocationOffset(child),  
                      childWidth, childHeight);  
              childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);  

              i += getChildrenSkipCount(child, i);  
          }  
      }  
  }  

layout设置了view的位置,还设置了子视图位置,layoutHorizontal()方法中调用了setChildFrame方法:

private void setChildFrame(View child, int left, int top, int width, int height) {          
    child.layout(left, top, left + width, top + height);  
} 

从上面看出,layout也是一个自上而下的过程,先设置父视图位置,在循环子视图,父视图位置一定程度上决定了子视图位置。

3、Draw过程

draw过程调用顺序在measure()和layout()之后,同样的,performTraversals()发起的draw过程最终会调用到mView的draw()函数,这里的mView对于Activity来说就是PhoneWindow.DecorView。看一下view类的draw方法:

 public void draw(Canvas canvas) {
        ......
        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        ......
        if (!dirtyOpaque) {
            drawBackground(canvas);
        }

        // skip step 2 & 5 if possible (common case)
        ......

        // Step 2, save the canvas' layers
        ......
            if (drawTop) {
                canvas.saveLayer(left, top, right, top + length, null, flags);
            }
        ......

        // Step 3, draw the content
        if (!dirtyOpaque) onDraw(canvas);

        // Step 4, draw the children
        dispatchDraw(canvas);

        // Step 5, draw the fade effect and restore layers
        ......
        if (drawTop) {
            matrix.setScale(1, fadeHeight * topFadeStrength);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, right, top + length, p);
        }
        ......

        // Step 6, draw decorations (scrollbars)
        onDrawScrollBars(canvas);
        ......
    }

draw方法分为6步

  1. 绘制该View的背景
  2. 为显示渐变框做一些准备操作
  3. 调用onDraw()方法绘制视图本身
  4. 调用dispatchDraw ()方法绘制子视图
  5. 绘制渐变框
  6. 绘制滚动条

第三步, Draw view’s content步骤调用了onDraw方法,子类中实现onDraw方法。
第四步,Draw children步骤使用的dispatchDraw方法,这个方法在ViewGroup中有实现。
View或ViewGroup的子类不用再重载ViewGroup中该方法,因为它已经有了默认而且标准的view系统流程。dispatchDraw()内部for循环调用drawChild()分别绘制每一个子视图,而drawChild()内部又会调用draw()函数完成子视图的内部绘制工作。

@Override  
   protected void dispatchDraw(Canvas canvas) {  
       final int count = mChildrenCount;  
       final View[] children = mChildren;  
       int flags = mGroupFlags;  

       if ((flags & FLAG_RUN_ANIMATION) != 0 && canAnimate()) {  
           final boolean cache = (mGroupFlags & FLAG_ANIMATION_CACHE) == FLAG_ANIMATION_CACHE;  

           final boolean buildCache = !isHardwareAccelerated();  
           for (int i = 0; i < count; i++) {  
               final View child = children[i];  
               if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE) {  
                   final LayoutParams params = child.getLayoutParams();  
                   attachLayoutAnimationParameters(child, params, i, count);  
                   bindLayoutAnimation(child);  
                   if (cache) {  
                       child.setDrawingCacheEnabled(true);  
                       if (buildCache) {                          
                           child.buildDrawingCache(true);  
                       }  
                   }  
               }  
           }  

           final LayoutAnimationController controller = mLayoutAnimationController;  
           if (controller.willOverlap()) {  
               mGroupFlags |= FLAG_OPTIMIZE_INVALIDATE;  
           }  

           controller.start();  

           mGroupFlags &= ~FLAG_RUN_ANIMATION;  
           mGroupFlags &= ~FLAG_ANIMATION_DONE;  

           if (cache) {  
               mGroupFlags |= FLAG_CHILDREN_DRAWN_WITH_CACHE;  
           }  

           if (mAnimationListener != null) {  
               mAnimationListener.onAnimationStart(controller.getAnimation());  
           }  
       }  

       int saveCount = 0;  
       final boolean clipToPadding = (flags & CLIP_TO_PADDING_MASK) == CLIP_TO_PADDING_MASK;  
       if (clipToPadding) {  
           saveCount = canvas.save();  
           canvas.clipRect(mScrollX + mPaddingLeft, mScrollY + mPaddingTop,  
                   mScrollX + mRight - mLeft - mPaddingRight,  
                   mScrollY + mBottom - mTop - mPaddingBottom);  

       }  

       // We will draw our child's animation, let's reset the flag  
       mPrivateFlags &= ~PFLAG_DRAW_ANIMATION;  
       mGroupFlags &= ~FLAG_INVALIDATE_REQUIRED;  

       boolean more = false;  
       final long drawingTime = getDrawingTime();  

       if ((flags & FLAG_USE_CHILD_DRAWING_ORDER) == 0) {  
           for (int i = 0; i < count; i++) {  
               final View child = children[i];  
               if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {  
                   more |= drawChild(canvas, child, drawingTime);  
               }  
           }  
       } else {  
           for (int i = 0; i < count; i++) {  
               final View child = children[getChildDrawingOrder(count, i)];  
               if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {  
                   more |= drawChild(canvas, child, drawingTime);  
               }  
           }  
       }  

       // Draw any disappearing views that have animations  
       if (mDisappearingChildren != null) {  
           final ArrayList disappearingChildren = mDisappearingChildren;  
           final int disappearingCount = disappearingChildren.size() - 1;  
           // Go backwards -- we may delete as animations finish  
           for (int i = disappearingCount; i >= 0; i--) {  
               final View child = disappearingChildren.get(i);  
               more |= drawChild(canvas, child, drawingTime);  
           }  
       }  

       if (debugDraw()) {  
           onDebugDraw(canvas);  
       }  

       if (clipToPadding) {  
           canvas.restoreToCount(saveCount);  
       }  

       // mGroupFlags might have been updated by drawChild()  
       flags = mGroupFlags;  

       if ((flags & FLAG_INVALIDATE_REQUIRED) == FLAG_INVALIDATE_REQUIRED) {  
           invalidate(true);  
       }  

       if ((flags & FLAG_ANIMATION_DONE) == 0 && (flags & FLAG_NOTIFY_ANIMATION_LISTENER) == 0 &&  
               mLayoutAnimationController.isDone() && !more) {  
           // We want to erase the drawing cache and notify the listener after the  
           // next frame is drawn because one extra invalidate() is caused by  
           // drawChild() after the animation is over  
           mGroupFlags |= FLAG_NOTIFY_ANIMATION_LISTENER;  
           final Runnable end = new Runnable() {  
              public void run() {  
                  notifyAnimationListener();  
              }  
           };  
           post(end);  
       }  
   }  

到这里整个view的绘制流程完成了。

4、绘制相关方法

invalidate()方法 :
说明:请求重绘View树,即draw()过程,假如视图大小没有发生变化就不会调用layout()过程,并且只绘制那些“需要重绘的”视图,即谁(View的话,只绘制该View ;ViewGroup,则绘制整个ViewGroup)请求invalidate()方法,就绘制该视图。
一般引起invalidate()操作的函数如下:

  • 1、直接调用invalidate()方法,请求重新draw(),但只会绘制调用者本身。

  • 2、setSelection()方法 :请求重新draw(),但只会绘制调用者本身。

  • 3、setVisibility()方法 :当View可视状态在INVISIBLE转换VISIBLE时,会间接调用invalidate()方法,继而绘制该View。

  • 4 、setEnabled()方法 : 请求重新draw(),但不会重新绘制任何视图包括该调用者本身。

requestLayout()方法 :
说明:会导致调用measure()过程 和 layout()过程 。只是对View树重新布局layout过程包括measure()和layout()过程,不会调用draw()过程,但不会重新绘制任何视图包括该调用者本身。
一般引起invalidate()操作的函数如下:
1、setVisibility()方法: 当View的可视状态在INVISIBLE/ VISIBLE 转换为GONE状态时,会间接调用requestLayout() 和invalidate方法。
同时,由于整个View树大小发生了变化,会请求measure()过程以及draw()过程,同样地,只绘制需要“重新绘制”的视图。

requestFocus()函数说明:
说明:请求View树的draw()过程,但只绘制“需要重绘”的视图。

你可能感兴趣的:(android,Android自定义View)