NCPC 2016 K.Keeping the Dogs Apart(GYM 101550K)题解

题意

有两条路径,每条路径都是由多条线段组成。两条狗分别沿着两条路径已相同的速度前进,问前进过程中两条狗的最短距离。

题解

考虑两条长度相等的线段,如果两条狗在这两条线段上前进,它们的距离是一个二次函数,很容易就能够找到最小值。把两条路径划分成长度相等的线段,求它们的最小值即可。

代码

#include 
#include 
#include 
#include 
using namespace std;
#define N 100010
const double eps=1e-8;
struct Point{
    double x,y;
    Point(){}
    Point(double x,double y):x(x),y(y){}
    Point operator-(const Point &p){return Point(x-p.x,y-p.y);}
    double operator*(const Point &p){return x*p.x+y*p.y;}
};
double dis(Point p){return sqrt(p*p);}
double dis2(Point p){return p*p;}
vector a,b;
int n,m;
double solve(vector &a,vector &b)
{
    auto ita=a.begin(),itb=b.begin();
    Point a1,a2,b1,b2,bb,v0,v1;
    double c0,c1,c2,ans=1e30,t;
    a1=*ita;b1=*itb;
    ++ita;++itb;
    a2=*ita;b2=*itb;
    while(ita!=a.end()&&itb!=b.end())
    {
        double ad=dis(a2-a1),bd=dis(b2-b1);
        if(ad>bd)
        {
            swap(ita,itb);
            swap(a,b);
            swap(a1,b1);
            swap(a2,b2);
            swap(ad,bd);
        }
        bb=Point(b1.x+(b2.x-b1.x)*ad/bd,b1.y+(b2.y-b1.y)*ad/bd);
        v0=b1-a1;v1=(bb-b1)-(a2-a1);
//        printf("(%.2f, %.2f) (%.2f, %.2f) (%.2f, %.2f) (%.2f, %.2f)\n",a1.x,a1.y,a2.x,a2.y,b1.x,b1.y,bb.x,bb.y);
        c2=v1*v1;c1=v0*v1;c0=v0*v0;
        //d^2=(v0+t*v1)^2=v1*v1*t^2+2*v0*v1*t+v0*v0
        if(abs(c2)0;
        else t=max(0.0,min(1.0,-c1/c2));
        ans=min(ans,c2*t*t+2*c1*t+c0);
        b1=bb;
        if(dis2(b1-b2)return sqrt(ans);
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        a.clear();b.clear();
        double x,y;
        for(int i=1;i<=n;++i)
        {
            scanf("%lf%lf",&x,&y);
            a.push_back(Point(x,y));
        }
        scanf("%d",&m);
        for(int i=1;i<=m;++i)
        {
            scanf("%lf%lf",&x,&y);
            b.push_back(Point(x,y));
        }
        printf("%.10f\n",solve(a,b));
    }
    return 0;
}

你可能感兴趣的:(计算几何)