【树】二叉树

数的概念

树(英语:tree)是一种抽象数据类型(ADT)或是视作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合,把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 每个节点有零个或多个子节点树的术语
  • 没有父节点的节点称为根节点
  • 每一个非根节点有且只有一个父节点
  • 除了根节点外,每个子节点可以分为多个不相交的子树

树的术语

  • 节点的度:一个节点含有的子树的个数称为该节点的度
  • 树的度:一棵树中,最大的节点的度称为树的度
  • 叶节点或终端节点:度为零的节点
  • 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点
  • 孩子节点或子节点:一个节点还含有的子树的根节点称为该节点的子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点
  • 节点的层次:从根开始定义起,根为第一层,根的子节点为第二层,以此类推
  • 树的高度或深度:树中节点的最大层次
  • 堂兄弟节点:父节点在同一层的节点互为堂兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙
  • 森林:由m(m>=0)颗互不相交的树的集合称为森林

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树
    • 二叉树:每个节点最多含有两个子树的树称为二叉树
      • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其他各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树
      • 平衡二叉树(AVL树):当且仅当任何节点的两颗子树的高度差不大于一的二叉树
      • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树,有序二叉树)
    • 霍夫曼树(用于信息编码):带权路径最短的二叉树称为霍夫曼树或最优二叉树
    • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树

二叉树的基本概念

二叉树是没个节点最多有两个子树的树结构。通常子树被称作“左子树”和“右子树”。

二叉树的性质(特性)

  • 在二叉树的第i层上至多有2i-1个节点(i>0)
  • 深度为k的二叉树至多有2k-1个结点(k>0)
  • 对于任意一颗二叉树,如果其叶节点树为N0,而度数为2的节点总数为N2,则N0=N2+1
  • 具有n个结点的完全二叉树的深度必为log2(n+1)
  • 对完全二叉树,若从上至下,从左至右编号,则编号为i的节点,其左孩子编号必为2i,其右孩子编号必为2i+1,其双亲的编号必为i/2(i=1时为根除外)
class Node(object):
    def __init__(self, item):
        self.elem = item
        self.lchild = None
        self.rchild = None


class Tree(object):
    """二叉树"""

    def __init__(self):
        self.root = None

    def add(self, item):
        node = Node(item)
        queue = [self.root]
        if self.root is None:
            self.root = node
            return
        while queue:
            cur_node = queue.pop(0)
            if cur_node.lchild is None:
                cur_node.lchild = node
                return
            else:
                queue.append(cur_node.lchild)
            if cur_node.rchild is None:
                cur_node.rchild = node
                return
            else:
                queue.append(cur_node.rchild)

    def breadth_travel(self):
        """广度遍历"""
        if self.root is None:
            return
        queue = [self.root]
        while queue:
            cur_node = queue.pop(0)
            print(cur_node.elem, end=" ")
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)

    def preorder(self, node):
        """先序遍历"""
        if node is None:
            return
        print(node.elem, end=" ")
        self.preorder(node.lchild)
        self.preorder(node.rchild)

    def inorder(self, node):
        """中序遍历"""
        if node is None:
            return
        self.inorder(node.lchild)
        print(node.elem, end=" ")
        self.inorder(node.rchild)

    def postorder(self, node):
        """后序遍历"""
        if node is None:
            return
        self.postorder(node.lchild)
        self.postorder(node.rchild)
        print(node.elem, end=" ")


if __name__ == "__main__":
    tree = Tree()
    tree.add(0)
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.add(5)
    tree.add(6)
    tree.add(7)
    tree.add(8)
    tree.add(9)
    tree.breadth_travel()
    print(" ")
    tree.preorder(tree.root)
    print(" ")
    tree.inorder(tree.root)
    print(" ")
    tree.postorder(tree.root)

你可能感兴趣的:(数据结构)