人脸检测dlib, mtcnnx对比,FDDB测试对比

问题来源 How does MTCNN perform vs DLIB for face detection?

前面一直做人脸检测相关内容,然后对比了下dib以及MTCNN的人脸检测效果主要是速度,以及FDDB准确率。最后给出生成FDDB测试文件的C++代码。


FDDB 测试结果

注本文的MTCNN效果检测准确率不是最优的,最优的在FDDB上可达95%,测试效果如下:

这里写图片描述

可以看到三种方法:

  1. MTCNN 大概90%

  2. dlib 大概 77%

  3. opencv 大概 62%

dlib的作者非要说我的测试有问题,如果谁感兴趣可以使用dlib测试下FDDB的结果。


速度

在CPU和GPU模式下,对于三种不同尺寸的图片,运行一千次测试平均的时效:

CPU模式

MTCNN(既检测人脸又做landmark):

这里写图片描述

dlib (仅仅检测人脸):

这里写图片描述

GPU模式

MTCNN(既检测人脸又做landmark):

这里写图片描述

dlib (仅仅检测人脸):

这里写图片描述

可以看到:

  1. 在检测精度上MTCNN显然好于dlib

  2. 无论是CPU还是GPU模型下MTCNN的检测数度都好于dlib,而且dlib还做了人脸的landmark


dlib c++生成FDDB结果代码如下(至于怎么使用FDDB测试可见前面blog,有py实现)或者我的stackoverflow回答:

#include 
#include 
#include 
#include 
#include 
using namespace std;
using namespace dlib;

// ----------------------------------------------------------------------------------------

template <long num_filters, typename SUBNET> using con5d = con5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5  = con5,5,1,1,SUBNET>;

template <typename SUBNET> using downsampler  = relu32, relu32, relu16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5  = relu45,SUBNET>>>;

using net_type = loss_mmod1,9,9,1,1,rcon56>>>>>>>>;

// ----------------------------------------------------------------------------------------

void getAllImgPaths(const std::string& file, std::vector<std::string>& vecPaths){

    std::fstream fStream(file);
    std::string sLine;

    while (std::getline(fStream, sLine)){
        if (sLine.size() > 0){
            vecPaths.emplace_back(sLine);
        }
    }

    fStream.close();
}

void writeStrVecToFile(const std::string& file, const std::vector<std::string>& vecStr){
    std::ofstream fout(file);
    for (auto const& x:vecStr){
        fout<'\n';
    }

    fout.close();
}



int main(){

    std::string fPath = "/home/xy/face_sample/evaluation/compareROC/FDDB-folds/filePath.txt";
    std::vector<std::string> vecImgPaths;

    getAllImgPaths(fPath, vecImgPaths);

    std::string imgBaseDir = "/home/xy/face_sample/evaluation/compareROC/originalPics/";
    std::vector<std::string> vecDetRet;

    string model_path = "/home/xy/anaconda2/lib/python2.7/site-packages/face_recognition_models/models/mmod_human_face_detector.dat";
    net_type net;
    deserialize(model_path) >> net;

    for (auto const& img_name:vecImgPaths){
        std::string imgFullPath = imgBaseDir + img_name + ".jpg";

        matrix img;
        load_image(img, imgFullPath);

        auto dets = net(img);
        vecDetRet.push_back(img_name);
        vecDetRet.push_back(std::to_string(dets.size()));

        for (auto det:dets){

            using std::to_string;

            // sFaceInfo like 49 55 193 193 0.999784
            std::string sFaceInfo = to_string(det.rect.left()) + " " + to_string(det.rect.top()) + " " +
                                    to_string(det.rect.width()) + " " + to_string(det.rect.height()) + " " + to_string(1);

            std::cout<std::endl;
            vecDetRet.push_back(sFaceInfo);

        }

    }

    // write face detect result to txt file for fddb compare
    std::string fddbTxtPath = "fddb_ret.txt";
    writeStrVecToFile(fddbTxtPath, vecDetRet);
}

你可能感兴趣的:(图像处理)